MATHEMATICS Class 10th (KPK) | NAME: | |------------------| | F.NAME: | | CLASS: SECTION: | | ROLL #: SUBJECT: | | ADDRESS: | | | | SCHOOL: | ## **UNIT #3** #### **VARIATIONS** Ex # 3.1 #### <u>Ratio</u> The comparison between two quantities of the same kind (same units) is called ratio. #### **Example** If a and b are two quantities of the same kind then ration is written as a:b or in fraction $$\frac{a}{b}$$ #### Example #1 Write the following ration in simplified form: (i) 3:12 The simplified form is 1:4 (ii) 6a:18b The simplified form is a:3b #### Example # 2 Divide Rs. 5070 among three persons in the ratio #### Solution: Amount = Rs. 5070 $$Ratio = 2:5:6$$ Sum the Ratio = $$2 + 5 + 6$$ Share of 1st Person = $$\frac{2}{13} \times 5070$$ = 2×390 Share of 2nd Person = $$\frac{5}{13} \times 5070$$ = 5×390 $$= Rs. 1950$$ Share of 3rd Person = $$\frac{6}{13} \times 5070$$ = 6×390 $$= 8 \times 340$$ #### **Proportion** A proportion is an equation that states that two ratios are equivalent. #### **Explanation** If a, b, c, d are four quantities then Ex # 3.1 $$a:b=c:d$$ $$\frac{a}{1} = \frac{a}{1}$$ Product of mean = Product of extreme $$a \times d = b \times c$$ Example #3 $$\overline{a^3 - b^3}$$, $\overline{a^2} - b^2$, $a^2 + ab + b^2$ and x are in a proportion. Find the value of x **Solution:** $$a^3 - b^3$$, $a^2 - b^2$, $a^2 + ab + b^2$ and x As these are in proportion $$a^3 - b^3$$: $a^2 - b^2 = a^2 + ab + b^2$: x As we have Product of mean = Product of extreme $$(a^3 - b^3) \times x = (a^2 - b^2)(a^2 + ab + b^2)$$ $$(a-b)(a^2+ab+b^2)x = (a+b)(a-b)(a^2+ab+b^2)$$ Divide B. S $$(a - b)(a^2 + ab + b^2)$$ $$\frac{(a-b)(a^2+ab+b^2)x}{(a-b)(a^2+ab+b^2)} = \frac{(a+b)(a-b)(a^2+ab+b^2)}{(a-b)(a^2+ab+b^2)}$$ $$x = a+b$$ #### **Variable quantity** If the value of a quantity changes under different situations, it is called a variable. #### **Example** Speed of train Demand of a commodity Population of a town #### **Variation** The change of variable parameters is called as variation #### **Example** If one quantity increase or decrease than what is its effect on other quantity. #### **Direct variation** Direct variation is the relationship between two quantities, whereby if one quantity increases the other also increases or if one quantity decreases the other also decreases. #### **Explanation** If y varies directly with x Then x increases,y also increasex decreases,y also decreases #### **Equation:** $$y \propto x$$ $$y = kx$$ #### **Example** If absence fine per day is 5. Then the fine for One day is 5 and the fine for four days is 20. So, it means if absentee increases fine also increases and when decreases then fine also decreases. #### **Inverse variation** If one quantity increases, the other decreases or if one quantity decreases the other increases, it is called inverse variation. #### **Explanation** If y varies inversely with x Then x increases,y also decreasey decreasesy also increases #### **Equation:** $$y \propto \frac{1}{x}$$ $$y = \frac{k}{x} \quad OR \quad xy = k$$ #### Example If workers increase to complete the work, then it will reduce the time #### **Constant quantities** If the value of a quantity remains unchanged under different situations, it is called a constant. #### **Example** 3, 4.45, $$\frac{2}{5}$$ ## Chapter #3 #### Ex # 3.1 #### Example #4 Given that y varies directly with x and y and y = 27 when x = 3. Find An equation connecting x and y The value of y when x = 11 #### **Solution:** As there is direct variation $y \propto x$ $y = kx \dots equ(i)$ Put x = 3 and y = 27 in equ(i) 27 = k(3) $\frac{27}{2} = \frac{k(3)}{2}$ 3 = k k = 9 So equ (i) becomes y = 9x Thus the equation connecting x and y is y = 9xNow To Find: y when x = 11 y = ?, x = 11 Put x = 11 and k = 9 in equ(i) y = 9(11) y = 99 #### Example #5 If $y \propto x$, then complete the following table. | х | 4 | 5 | 8 | | | |---|---|---|---|----|------| | у | 6 | | | 18 | 22.5 | #### **Solution:** As there is direct variation $y \propto x$ $y = kx \dots equ(i)$ Put x = 4 and y = 6 in equ(i) 6 = k(4) $\frac{6}{1} = \frac{k(4)}{1}$ $\frac{1}{4} = \frac{1}{4}$ $\frac{3}{2} = k$ $k = \frac{3}{2}$ ## https://tehkals.com/ #### Ex # 3.1 Now Put $$x = 5$$ and $k = \frac{3}{2}$ in equ(i) $$y = \frac{3}{2}(5)$$ $$y = \frac{15}{2}$$ $$y = 7.5$$ Now again Put $$x = 8$$ and $k = \frac{3}{2}$ in equ(i) $$y = \frac{3}{2}(8)$$ $$v = \frac{24}{12}$$ $$y = 12$$ Now again Put $$y = 18$$ and $k = \frac{3}{2}$ in equ(i) $$18 = \frac{3}{2}(x)$$ $$\frac{2}{3} \times 18 = x$$ $$2 \times 6 = x$$ $$12 = x$$ $$x = 12$$ Now again Put $$y = 22.5$$ and $k = \frac{3}{2}$ in equ(i) $$22.5 = \frac{3}{2}(x)$$ $$\frac{2}{3} \times 22.5 = x$$ $$\frac{10}{3} = 2$$ $$15 = x$$ $$x = 15$$ | х | 4 | 5 | 8 | 12 | 15 | |---|---|-----|----|----|------| | у | 6 | 7.5 | 12 | 18 | 22.5 | #### Example #6 If x varies inversely to y and x = 3, when y = 12. Find the value of y when x = 6 Solution: As there is Inverse variation $$y \propto \frac{1}{x}$$ ## Chapter #3 Ex # 3.1 $$y = \frac{k}{x} \dots \text{equ(i)}$$ Put $$x = 3$$ and $y = 12$ in equ(i) $$12 = \frac{k}{3}$$ $$12 \times 3 = k$$ $$36 = k$$ $$k = 36$$ Now To Find: $$y$$ when $x = 6$ $$y = ?, x = 6$$ Put $$x = 6$$ and $k = 36$ in equ(i) $$y = \frac{36}{6}$$ $$y = 6$$ #### Example #7 Given that pressure 'P' on the quantity of gas in a container varies inversely as volume of gas 'V'. When pressure on gas is 10 N/m^2 its volume is 25 m^3 . Find pressure when volume is 20 m^3 . #### Solution: As there is Inverse variation $$P \propto \frac{1}{V}$$ $$P = \frac{k}{V} \dots \dots \text{equ(i)}$$ Put $$P = 10$$ and $V = 25$ in equ(i) $$10 = \frac{k}{25}$$ $$10 \times 25 = k$$ $$250 = k$$ $$k = 250$$ Now To Find: P when V = 20 $$P = ?, V = 20$$ Put V = 20 and k = 250 in equ(i) $$P = \frac{250}{20}$$ $$P = 12.5$$ Thus Pressure = 12.5 N/m^2 ## Ex # 3.1 Page # 56 Q1: Which is the greater ratio, 5: 7 or 151: 208? Solution: As we have 5:7 or 151:208 Now $$5:7=\frac{5}{7}=0.714285$$ Also $$151:208 = \frac{151}{208} = 0.725961$$ Hence 151: 208 is greater ratio. Q2: Gold and silver are mixed in the ratio 7: 4. If 36 grams of silver is used. How much gold is used? **Solution:** Let gold used = x Ratio of Gold and Silver = 7:4 $Silver\ used = 36\ grams$ Now the ratio Gold and Silver $$7:4=x:36$$ As we have Product of mean = Product of extreme $$4 \times x = 7 \times 36$$ $$x = \frac{7 \times 36}{4}$$ x = 63 Thus 63 grams of Gold is used Q3: Divide the annual profit of Rs. 40,000 of a factory among 3 partners in the ratio of 5:8: **Solution:** Annual Profit = Rs.40,000 Ratio = 5:8:12 Sum the Ratio = 5 + 8 + 12 = 25 Share of 1st Partner = $\frac{5}{25} \times 40000$ = 5×1600 = Rs. 8000 Share of 2nd Partner = $\frac{8}{25} \times 40000$ $= 8 \times 1600$ = Rs. 12800 Ex # 3.1 Share of 3rd Partner = $\frac{12}{25} \times 40000$ = 12×1600 = Rs. 19200 Q4: If 11 : x - 1 = 22 : 27, find the value of *x* Solution: $$11: x - 1 = 22: 27$$ As we have Product of mean=Product of extreme $$22(x-1) = 11 \times 27$$ $$22x - 22 = 297$$ Add 22 on B. S $$22x - 22 + 22 = 297 + 22$$ $$22x = 319$$ Divide B. S by 22 $$\frac{22x}{22} = \frac{319}{22}$$ $$x = 14.5$$ Q5: There is a direct variation between x^2 and y. When x = 7, y = 49. Find: (i) y when x = 9 (ii) x when y = 100 Solution: As there is direct variation $$y \propto x^2$$ $$y = kx^2 \dots \text{equ(i)}$$ Put x = 7 and y = 49 in equ(i) $$49 = k(7)^2$$ $$49 = k(49)$$ $$\frac{49}{49} = \frac{k(49)}{49}$$ $$\begin{array}{ccc} 49 & 4 \\ 1 = k \end{array}$$ $$k = 1$$ To Find: y when x = 9 $$y = ?, x = 9$$ Put x = 9 and k = 1 in equ(i) $$y = 1(9)^2$$ $$y = 1(81)$$ $$y = 81$$ Now again To Find: $$x$$ when $y = 100$ $$x = ?, y = 100$$ Put y = 100 and k = 1 in equ(i) $$100 = 1(x^2)$$ $$100 = x^2$$ $$x^2 = 100$$ Taking Square root on B. S $$\sqrt{x^2} = \sqrt{100}$$ $$x = 10$$ Q6: There is inverse variation between x and y. When x = 4, y = 6. Find: - (i) | y when x = 12 - (ii) x when y = 24 #### Solution: As there is Inverse variation $$y \propto \frac{1}{x}$$ $$y = \frac{k}{x}$$ equ(i) Put x = 4 and y = 6 in equ(i) $$6 = \frac{k}{4}$$ $$6 \times 4 = k$$ $$24 = k$$ $$k = 24$$ Now To Find: $$y$$ when $x = 12$ $$y = ?, x = 12$$ Put x = 12 and k = 24 in equ(i) $$y = \frac{24}{12}$$ $$y = 2$$ Now again Find: $$x$$ when $y = 24$ $$x = ?, x = 24$$ Put y = 24 and k = 24 in equ(i) $$24 = \frac{24}{r}$$ $$x = \frac{24}{24}$$ $$x = 1$$ ## Chapter #3 #### Ex # 3.1 Q7: $r \propto \frac{1}{p^3}$ and p = 9 when r = 2. Find: i) $$r$$ when $p=3$ (ii) $$p$$ when $r = \frac{1}{4}$ #### **Solution**: $$r \propto \frac{1}{p^3}$$ $$r = \frac{k}{p^3} \dots \dots \text{equ(i)}$$ Put p = 9 and r = 2 in equ(i) $$2 = \frac{k}{(9)^3}$$ $$2 = \frac{k}{729}$$ $$2 \times 729 = k$$ $$1458 = k$$ $$k = 1458$$ Now To Find: $$r$$ when $p=3$ $$r = ?, p = 3$$ Put p = 3 and k = 1458 in equ(i) $$r = \frac{1458}{(3)^3}$$ $$1458$$ $$r = \frac{1458}{27}$$ $$r = 54$$ Now again To Find: $$p$$ when $r = \frac{1}{4}$ $$p = ?, r = \frac{1}{4}$$ Put $$r = \frac{1}{4}$$ and $k = 1458$ in equ(i) $$\frac{1}{4} = \frac{1458}{p^3}$$ #### **By Cross Multiplication** $$1\times p^3=1458\times 4$$ $$p^3=18^3$$ Taking Cube root on B. S $$\sqrt[3]{p^3} = \sqrt[3]{18^3}$$ $$p = 18$$ **Q8**: #### Ex # 3.1 ### If $y \propto x$, then complete the following table. | y - 10, 011011 00111p1000 | | | | | |---------------------------|---|---|-----|----| | x | 4 | 6 | | 15 | | у | 2 | | 3.5 | | #### Solution: As there is direct variation $$y \propto x$$ $y = kx$ equ(i) Put $x = 4$ and $y = 2$ in equ(i) $2 = k(4)$ $\frac{2}{4} = \frac{k(4)}{4}$ $\frac{1}{2} = k$ $k = \frac{1}{2}$ Now Put $$x = 6$$ and $k = \frac{1}{2}$ in equ(i) $$y = \frac{1}{2}(6)$$ $$y = 3$$ Now again Put $$y = 3.5$$ and $k = \frac{1}{2}$ in equ(i) $$3.5 = \frac{1}{2}(x)$$ $$\frac{2}{1} \times 3.5 = x$$ $$7 = x$$ $$x = 7$$ Now again Put $$x = 15$$ and $k = \frac{1}{2}$ in equ(i) $$y =
\frac{1}{2}(15)$$ $$y = \frac{15}{2}$$ $$y = 7.5$$ | x | 4 | 6 | 7 | 15 | |---|---|---|-----|-----| | у | 2 | 3 | 3.5 | 7.5 | ## Chapter #3 #### Ex # 3.2 #### <u>Third, fourth Mean and Continued Proportion</u> <u>Continued Proportion</u> Three quantities are said to be in continued proportion, if the ratio between the first and the second is equal to the ratio between second and third. #### **Example** If a, b and c are in continued proportion then Product of mean=Product of extreme So $$b^2 = ac$$ In the above example: b is called mean proportion or geometric mean c is called the third proportion #### **Fourth proportion** If four quantities a, b, c and d are: Here d is called fourth proportion #### Example #8 ## Find the mean proportional of 5 , 15 Solution: Let the mean proportional = x So 5, x, 15 are in continued proportional Now we write it $$5: x = x: 15$$ Product of mean=Product of extreme $$x \times x = 5 \times 15$$ $$x^2 = 75$$ #### Taking square root on B. S $$\sqrt{x^2} = \sqrt{75}$$ $$x = \sqrt{25 \times 3}$$ $$x = \sqrt{25} \times \sqrt{3}$$ $$x = 5\sqrt{3}$$ #### Example # 9 ## Find the mean proportional of a^2b^2 and abc Solution: Let the third proportional = x So a^2b^2 , abc , x are in continued proportional Now we write it $$a^2b^2:abc=abc:x$$ Product of mean=Product of extreme $$abc \times abc = a^2b^2 \times x$$ $a^2b^2c^2 = a^2b^2 \times x$ #### Divide B. S a^2b^2 $$\frac{a^2b^2c^2}{a^2b^2} = \frac{a^2b^2 \times x}{a^2b^2}$$ $$c^2 = x$$ $$x = c^2$$ #### Example # 10: Find fourth proportion of a^3-b^3 , $$a + b$$ and $a^2 + ab + b^2$ #### **Solution:** Let the fourth proportional = x $a^3 - b^3$, a + b, $a^2 + ab + b^2$, x are in proportional Now we write it $$a^3 - b^3 : a + b = a^2 + ab + b^2 : x$$ #### Product of mean=Product of extreme $$(a+b)(a^2+ab+b^2) = (a^3-b^3)x$$ $$(a+b)(a^2+ab+b^2) = (a-b)(a^2+ab+b^2)x$$ Divide B. S $$(a-b)(a^2+ab+b^2)$$ $$\frac{(a+b)(a^2+ab+b^2)}{(a-b)(a^2+ab+b^2)} = \frac{(a-b)(a^2+ab+b^2)x}{(a-b)(a^2+ab+b^2)}$$ $$\frac{(a+b)}{(a-b)} = x$$ $$x = \frac{(a+b)}{(a-b)}$$ ### **Theorems on Proportion** #### **Alternendo Property** If a : b = c : d then a : c = b : d It means that if the second and third term interchange their places, then also the four terms are in proportion. #### **Example** If $$3:5 = 6:10$$ then $3:6 = 1:2 = 5:10$ ## Chapter #3 #### Ex # 3.2 #### **Invertendo Property** If a: b = c: d then b: a = d: c It means that if two ratios are equal, then their inverse are also equal. #### **Example** $$6: 10 = 9: 15 \text{ then}$$ $10: 6 = 5: 3 = 15: 9$ #### **Componendo Property** If a: b = c: d then (a + b): b = (c + d): dOr If $$a: b = c: d$$ then $\frac{a+b}{b} = \frac{c+d}{d}$ #### **Example:** If 4: 5 = 8: 10 then (4 + 5): 5 = (8 + 10): 10 Or If 4: 5 = 8: 10 then $$\frac{4+5}{5} = \frac{8+10}{10}$$ #### **Dividendo Property** If a: b = c: d then (a - b): b = (c - d): d Or If a: $$b = c$$: d then $\frac{a+b}{b} = \frac{c+d}{d}$ #### **Example:** If 5: 4 = 10: 8 then (5 - 4): 4 = (10 - 8): 8 Or If 5: 4 = 10: 8 then $$\frac{5-4}{4} = \frac{10-8}{8}$$ #### **Componendo-Dividendo Property** If a:b::c:d then $$(a + b) : (a - b) = (c + d) : (c - d)$$ If a: b = c: d then $\frac{a+b}{a-b} = \frac{c+d}{c-d}$ #### **Example** If 7: 3 = 14: 6 then $$(7+3):(7-3)=(14+6):(14-6)$$ Or If 7: 3 = 14: 6 then $$\frac{7+3}{7-3} = \frac{14+6}{14-6}$$ #### Example # 11 If $\frac{a}{b} = \frac{c}{d}$ then prove that 2a+3b:b=2c+3d:d #### Solution: As we have $$\frac{a}{b} = \frac{c}{d}$$ #### To prove $$2a + 3b : b = 2c + 3d : d$$ Now $$\frac{a}{b} = \frac{c}{d}$$ Multiply on B. S by $\frac{2}{3}$ $$\frac{2}{3} \times \frac{a}{b} = \frac{2}{3} \times \frac{c}{d}$$ $$\frac{2a}{a} = \frac{2c}{a}$$ #### By Componenendo Property $$\frac{2a+3b}{3b} = \frac{2c+3d}{3d}$$ Multiply on B. S by 3 $$3 \times \frac{2a+3b}{3b} = 3 \times \frac{2c+3d}{3d}$$ $$\frac{2a+3b}{b} = \frac{2c+3d}{d}$$ #### OR $$2a + 3b : b = 2c + 3d : d$$ #### **Hence Proved** #### Example # 12 If $$\frac{3a-4b}{3a+4b} = \frac{3c-4d}{3c+4d}$$ Prove that $\frac{a}{b} = \frac{c}{d}$ #### **Solution:** As we have $$\frac{3a-4b}{3a+4b} = \frac{3c-4d}{3c+4d}$$ #### To prove $$\frac{a}{b} = \frac{c}{d}$$ Now $$\frac{3a-4b}{3a+4b} = \frac{3c-4d}{3c+4d}$$ ## By Componenendo – Dividendo Property $$\frac{(3a-4b)+(3a+4b)}{(3a-4b)-(3a+4b)} = \frac{(3c-4d)+(3c+4d)}{(3c-4d)-(3c+4d)}$$ ## Chapter #3 #### Ex # 3 2 $$\frac{3a - 4b + 3a + 4b}{3a - 4b - 3a - 4b} = \frac{3c - 4d + 3c + 4d}{3c - 4d - 3c - 4d}$$ $$\frac{3a+3a-4b+4b}{3a-3a-4b-4b} = \frac{3c+3c-4d+4d}{3c-3c-4d-4d}$$ $$\frac{6a}{-8b} = \frac{6c}{-8d}$$ Multiply on B. S by $$\frac{-8}{6}$$ $$\frac{-8}{6} \times \frac{6a}{-8b} = \frac{-8}{6} \times \frac{6c}{-8d}$$ $$\frac{a}{b} = \frac{c}{d}$$ #### **Hence Proved** #### Example # 13 $$\frac{(x+3)^2 + (x-4)^2}{(x+3)^2 - (x+4)^2} = \frac{13}{12}$$ #### **Solution:** $$\frac{(x+3)^2 + (x-4)^2}{(x+3)^2 - (x+4)^2} = \frac{13}{12}$$ #### By Componenendo – Dividendo Property $$\frac{[(x+3)^2 + (x-4)^2] + [(x+3)^2 - (x+4)^2]}{[(x+3)^2 + (x-4)^2] - [(x+3)^2 - (x+4)^2]} = \frac{13+12}{13-12}$$ $$\frac{(x+3)^2 + (x-4)^2 + (x+3)^2 - (x-4)^2}{(x+3)^2 + (x-4)^2 - (x+3)^2 + (x-4)^2} = \frac{25}{1}$$ $$\frac{(x+3)^2 + (x+3)^2 + (x-4)^2 - (x-4)^2}{(x+3)^2 - (x+3)^2 + (x-4)^2 + (x-4)^2 + (x-4)^2} = 25$$ $$\frac{2(x+3)^2}{2(x-4)^2} = 25$$ $$\frac{(x+3)^2}{(x-4)^2} = 25$$ $$\left(\frac{x+3}{x-4}\right)^2 = 25$$ #### Taking square root on B. S $$\sqrt{\left(\frac{x+3}{x-4}\right)^2} = \pm\sqrt{25}$$ $$\frac{x+3}{x-4} = \pm 5$$ $$\frac{x+3}{x-4} = 5$$ or $\frac{x+3}{x-4} = -5$ ## Ex # 3.2 Page # 60 Q1: Which of the following quantities are in continued proportion? (i) 4,12,36 #### Solution: As 4, 12, 36 are in continued proportional So we can write it 4:12=12:36 Product of mean=Product of extreme $12 \times 12 = 4 \times 36$ 144 = 144 Thus 4, 12, 36 are in continued proportional (ii) 3,12,39 #### Solution: As 3, 12, 39 are in continued proportional So we can write it 3:12=12:39 Product of mean=Product of extreme $12 \times 12 = 3 \times 39$ 144 = 117 Thus 4, 12, 36 are not in continued proportional (iii) 72,24,8 #### Solution: As 72, 24, 8 are in continued proportional So we can write it 72:24=24:8 Product of mean=Product of extreme $24 \times 24 = 72 \times 8$ 576 = 576 Thus 72, 24, 8 are in continued proportional Q2: Find the mean proportional of 12, 3 #### **Solution**: Let the mean proportional = x So 12, x, 3 are in continued proportional Now we write it 12: x = x: 3 Product of mean=Product of extreme $x \times x = 12 \times 3$ $x^2 = 36$ Ex # 3.2 Taking square root on B. S $$\sqrt{x^2} = \sqrt{36}$$ $$x = 6$$ Q3: If 5:15:x are in continued proportional, find the value of x #### Solution: As 5:15:x are in continued proportional So we can write it 5:15=15:x Product of mean=Product of extreme $$15 \times 15 = 5 \times x$$ $$225 = 5x$$ Divide B. S by 5 $$\frac{225}{5} = \frac{5x}{5}$$ $$45 = x$$ $$x = 45$$ Q4: If 3x - 1 : 4 : 35 are in continued proportional, find the value of x #### Solution: As 3x - 1 : 4 : 35 are in continued proportional So we can write it $$3x - 1: 4 = 4:35$$ As we have Product of mean=Product of extreme $$4 \times 4 = 35(3x - 1)$$ $$16 = 105x - 35$$ Add 35 on B. S 16 + 35 = 105x - 35 + 35 51 = 105x Divide B. S by 105 $$\frac{51}{105} = \frac{105x}{105}$$ $$\frac{19}{-}$$ = $$x = \frac{19}{51}$$ Q7: #### Ex # 3.2 ## Q5: Find the mean proportional of $a^2 - b^2$ and $\frac{a+b}{a-b}$ #### **Solution:** Let the mean proportional = x $$a^2-b^2$$, x , $\frac{a+b}{a-b}$ are in continued proportional Now we write it $$a^2 - b^2 : x = x : \frac{a+b}{a-b}$$ Product of mean=Product of extreme $$x \times x = (a^2 - b^2) \left(\frac{a+b}{a-b} \right)$$ $$x^2 = (a+b)(a-b)\left(\frac{a+b}{a-b}\right)$$ $$x^2 = (a+b)(a+b)$$ $$x^2 = (a+b)^2$$ #### Taking square root on B. S $$\sqrt{x^2} = \sqrt{(a+b)^2}$$ $$x = a+b$$ Q6: If $$\frac{a}{b} = \frac{c}{d}$$ then prove that $\frac{ac + bd}{ac - bd} = \frac{a^2 + b^2}{a^2 - b^2}$ #### Solution: As we have $$\frac{a}{b} = \frac{c}{d}$$ #### To prove $$\frac{ac+bd}{ac-bd} = \frac{a^2+b^2}{a^2-b^2}$$ Now $$\frac{a}{b} = \frac{c}{d}$$ Multiply $$\frac{a}{h}$$ on B. S $$\frac{a}{b} \times \frac{a}{b} = \frac{a}{b} \times \frac{c}{d}$$ $$\frac{a^2}{b^2} = \frac{ac}{bd}$$ #### By Componenendo – Dividendo Property $$\frac{a^2 + b^2}{a^2 - b^2} = \frac{ac + bd}{ac + bd}$$ $$\frac{ac+bd}{ac+bd} = \frac{a^2+b^2}{a^2-b^2}$$ #### Ex # 3.2 Solve the following equations. (i) $$\frac{\sqrt{3x+2} + \sqrt{x}}{\sqrt{3x+2} - \sqrt{x}} = \frac{4}{1}$$ #### Solution: $$\frac{\sqrt{3x+2} + \sqrt{x}}{\sqrt{3x+2} - \sqrt{x}} = \frac{4}{1}$$ #### By Componenendo - Dividendo Property $$\frac{\left(\sqrt{3x+2}+\sqrt{x}\right)+\left(\sqrt{3x+2}-\sqrt{x}\right)}{\left(\sqrt{3x+2}+\sqrt{x}\right)-\left(\sqrt{3x+2}-\sqrt{x}\right)} = \frac{4+1}{4-1}$$ $$\frac{\sqrt{3x+2} + \sqrt{x} + \sqrt{3x+2} - \sqrt{x}}{\sqrt{3x+2} + \sqrt{x} - \sqrt{3x+2} + \sqrt{x}} = \frac{5}{3}$$ $$\frac{\sqrt{3x+2} + \sqrt{3x+2} + \sqrt{x} - \sqrt{x}}{\sqrt{3x+2} - \sqrt{3x+2} + \sqrt{x} + \sqrt{x}} = \frac{5}{3}$$ $$\frac{2\sqrt{3x+2}}{2\sqrt{x}} = \frac{5}{3}$$ $$\frac{\sqrt{3x+2}}{\sqrt{x}} = \frac{5}{3}$$ $$\frac{3x+2}{x} = \frac{5}{3}$$ ### Taking square on B. S $$\left(\sqrt{\frac{3x+2}{x}}\right)^2 = \left(\frac{5}{3}\right)^2$$ $$\frac{3x+2}{x} = \frac{25}{9}$$ #### **By Cross Multiplication** $$9(3x+2) = 25 \times x$$ $$27x + 18 = 25x$$ $$27x - 25x = -18$$ $$2x = -18$$ #### Divide B. S by 2 $$\frac{2x}{2} = \frac{-18}{2}$$ $$x = -9$$ $$S.S = \{-9\}$$ (ii) $$\frac{(x-1)^2 + (x+2)^2}{(x-1)^2 - (x+2)^2} = -\frac{17}{8}$$ **Solution:** $$\frac{(x-1)^2 + (x+2)^2}{(x-1)^2 - (x+2)^2} = -\frac{17}{8}$$ #### By Componenendo – Dividendo Property $$\frac{[(x-1)^2 + (x+2)^2] + [(x-1)^2 - (x+2)^2]}{[(x-1)^2 + (x+2)^2] - [(x-1)^2 - (x+2)^2]} = \frac{-17 + 8}{-17 - 8}$$ $$\frac{(x-1)^2 + (x+2)^2 + (x-1)^2 - (x+2)^2}{(x-1)^2 + (x+2)^2 - (x-1)^2 + (x+2)^2} = \frac{9}{25}$$ $$\frac{(x-1)^2 + (x-1)^2 + (x+2)^2 - (x+2)^2}{(x-1)^2 -
(x-1)^2 + (x+2)^2 + (x+2)^2} = \frac{9}{25}$$ $$\frac{2(x-1)^2}{2(x+2)^2} = \frac{9}{25}$$ $$\frac{(x-1)^2}{(x+2)^2} = \frac{9}{25}$$ $$\left(\frac{x-1}{x+2}\right)^2 = \frac{9}{25}$$ #### Taking square root on B. S $$\sqrt{\left(\frac{x-1}{x+2}\right)^2} = \pm \sqrt{\frac{9}{25}}$$ $$\frac{x-1}{x+2} = \pm \frac{3}{5}$$ $$\frac{x-1}{x+2} = \frac{3}{5}$$ or $\frac{x-1}{x+2} = -\frac{3}{5}$ #### By Cross Multiplication $$5(x-1) = 3(x+2)$$ or $5(x-1) = -3(x+2)$ $$5x - 5 = 3x + 6$$ or $5x - 5 = -3x - 6$ $$5x - 3x = 6 + 5$$ or $5x + 3x = -6 + 5$ $$2x = 11$$ or $8x = -1$ $$x = \frac{11}{2}$$ or $x = \frac{-1}{8}$ $$S.S = \left\{ \frac{11}{2} , \frac{-1}{8} \right\}$$ ## Chapter #3 (iii) $$\frac{\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} = \frac{1}{3}$$ **Solution**: $$\frac{\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} = \frac{1}{3}$$ #### By Componenendo – Dividendo Property $$\frac{\left(\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}\right) + \left(\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}\right)}{\left(\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}\right) - \left(\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}\right)} = \frac{1+3}{1-3}$$ $$\frac{\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2} + \sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}}{\sqrt{x^2 + a^2} - \sqrt{x^2 - a^2} - \sqrt{x^2 + a^2} - \sqrt{x^2 - a^2}} = \frac{4}{-2}$$ $$\frac{2\sqrt{x^2 + a^2}}{-2\sqrt{x^2 - a^2}} = -2$$ $$-\frac{2\sqrt{x^2 + a^2}}{2\sqrt{x^2 - a^2}} = -2$$ $$\frac{\sqrt{x^2 + a^2}}{\sqrt{x^2 - a^2}} = 2$$ $$\sqrt{\frac{x^2 + a^2}{x^2 - a^2}} = 2$$ ## Taking square on B. S $$\left(\sqrt{\frac{x^2 + a^2}{x^2 - a^2}}\right)^2 = (2)^2$$ $$\frac{x^2 + a^2}{x^2 - a^2} = 4$$ $$x^2 + a^2 = 4(x^2 - a^2)$$ $$x^2 + a^2 = 4x^2 - 4a^2$$ $$a^2 + 4a^2 = 4x^2 - x^2$$ $$5a^2 = 3x^2$$ $$3x^2 = 5a^2$$ $$x^2 = \frac{5a^2}{3}$$ #### Taking square on B. S $$\sqrt{x^2} = \pm \sqrt{\frac{5a^2}{3}}$$ $$x = \pm \sqrt{\frac{5}{3}} a$$ $$S. S = \left\{ \pm \sqrt{\frac{5}{3}} \ a \right\}$$ #### Joint variation A combination of direct and inverse variation of one or more variables forms joint variation. If y varies jointly as x and z Then $$y \propto xz$$ If y varies directly as x and inversely as z Then $$y \propto \frac{x}{z}$$ #### Example: Area of a triangle = $$\frac{1}{2}bh$$ Here the constant k is $\frac{1}{2}$ Area of a triangle varies jointly with base 'b' and height 'h' #### Example # 14 (imp) If y varies jointly as x and z, and y = 12when x = 9 and z = 3, find z when y = 6 and x = 15. #### Solution: As y varies jointly as x and z So $$y \propto xz$$ $$y = kxz$$equ(i) Put y = 12, x = 9 and z = 3 in equ(i) $$12 = k(9)(3)$$ $$\frac{12}{(9)(3)} = k$$ $$\frac{4}{(9)(1)} = k$$ $$\frac{4}{\bar{a}} = k$$ $$k = \frac{4}{9}$$ #### Now To Find: $$z$$ when $x = 15$ and $y = 6$ $$z = ?, x = 15$$ and $y = 6$ Put $$x = 15$$, $y = 6$ and $k = \frac{4}{9}$ in equ(i) $$6 = \left(\frac{4}{9}\right)(15)(z)$$ $$6 = \left(\frac{4}{3}\right)(5)(z)$$ ## Chapter #3 Ex # 3.3 $$6 = \left(\frac{20}{3}\right)(z)$$ $$6 \times \frac{3}{20} = z$$ $$\frac{18}{20} = z$$ $$\frac{9}{10} = z$$ ## Ex # 3.3 Page # 62 If y varies jointly as x and z, and y = 33 when x = 9 and z = 12, find y when x = 16 and z = 22. #### **Solution:** $z=\frac{10}{10}$ As y varies jointly as x and z So Q1: $$y \propto xz$$ $$y = kxz \dots equ(i)$$ Put $$y = 33$$, $x = 9$ and $z = 12$ in equ(i) $$33 = k(9)(12)$$ $$\frac{33}{2}$$ = 1 $$\frac{}{(9)(12)} =$$ $$\frac{11}{3(12)} = k$$ $$\frac{11}{36} = k$$ $$k = \frac{11}{36}$$ Now To Find: y when x = 16 and z = 22 $$y = ?, x = 16$$ and $z = 22$ Put x = 16, z = 22 and k = 1 in equ(i) $$y = \left(\frac{11}{36}\right)(16)(22)$$ $$y = \left(\frac{11}{9}\right)(4)(22)$$ $$y = \left(\frac{11}{9}\right)(88)$$ $$y = \frac{968}{9}$$ **Q2**: Ex # 3.3 If f varies jointly as g and the cube of h, and f = 200 when g = 5 and h = 4, find f when g = 3 and h = 6 **Solution:** As f varies jointly as g and h^3 So $f \propto gh^3$ $f = kgh^3 \dots \dots equ(i)$ Put f = 200, g = 5 and h = 4 in equ(i) $200 = k(5)(4)^3$ 200 = k(5)(64) $$\frac{200}{(5)(64)} = 1$$ $$\frac{40}{(1)(64)} = k$$ $$\frac{\dot{5}}{-}$$ $$k = \frac{5}{2}$$ Now To Find: f when g = 3 and h = 6 f = ?, g = 3 and h = 6 Put g = 3, h = 6 and $k = \frac{5}{8}$ in equ(i) $$f = \left(\frac{5}{8}\right)(3)(6)^3$$ $$f = \left(\frac{5}{8}\right)(3)(216)$$ $$f = (5)(3)(27)$$ $$f = (15)(27)$$ $$f = 405$$ Q3: Suppose a is jointly proportional to b and c. If a = 4 when b = 8 and c = 9, then what is *a* when b = 2 and c = 18? Solution: As *a* is jointly proportional to *b* and *c* So $a \propto bc$ $a = kbc \dots equ(i)$ Put a = 4, b = 8 and c = 9 in equ(i) 4 = k(8)(9) $$\frac{4}{(8)(9)} = k$$ Ex # 3.3 $$\frac{1}{2} - 1$$ $$\frac{1}{18} = k$$ $$k = \frac{1}{18}$$ To Find: a when b = 2 and c = 18 $$a = ?, b = 2 \text{ and } c = 18$$ Put b = 2, c = 18 and $k = \frac{1}{18}$ in equ(i) $$a = \left(\frac{1}{18}\right)(2)(18)$$ a = Q4: If p varies jointly as q and r squared, and p = 225 when q = 4 and r = 3, find p when q = 6 and r = 9 find p when q = 6 and r = 8. Solution: p varies jointly as q and r^2 $$p \propto qr^2$$ $$p = kqr^2 \dots \dots \text{equ(i)}$$ Put p = 225, q = 4 and r = 3 in equ(i) $$225 = k(4)(3)^2$$ $$225 = k(4)(9)$$ $$\frac{225}{(4)(9)} = k$$ $$\frac{25}{(4)(1)} = 1$$ $$\frac{25}{4} = I$$ $$k = \frac{25}{4}$$ To Find: $$p = ?, q = 6 \text{ and } r = 8$$ Put q = 6, r = 8 and $k = \frac{25}{4}$ in equ(i) $$p = \left(\frac{25}{4}\right)(6)(8)^2$$ $$p = \left(\frac{25}{4}\right)(6)(64)$$ $$p = \left(\frac{25}{1}\right)(6)(16)$$ $$p = (25)(6)(16)$$ p = 2400 **Q5**: ## Chapter #3 #### Ex # 3.3 If a varies jointly as b cubed and c, and a = 36 when b = 4 and c = 6, find a when b = 2 and c = 14. #### **Solution:** As a is jointly proportional to b cubed and c $$a \propto bc$$ $$a = kb^3c$$ equ(i) Put $$a = 36$$, $b = 4$ and $c = 6$ in equ(i) $$36 = k(4)^3(6)$$ $$36 = k(64)(6)$$ $$\frac{36}{(64)(6)} = 1$$ $$\frac{6}{64} = k$$ $$\frac{3}{32} = k$$ $$k = \frac{3}{32}$$ #### Now To Find: $$a \text{ when } b = 2 \text{ and } c = 14$$ $$a = ?, b = 2 \text{ and } c = 14$$ Put b = 2, c = 14 and $k = \frac{3}{32}$ in equ(i) $$a = \left(\frac{3}{32}\right)(2)^3(14)$$ $$a = \left(\frac{3}{32}\right)(8)(14)$$ $$a = \left(\frac{3}{4}\right)(1)(14)$$ $$a = \left(\frac{3}{2}\right)(1)(7)$$ $$a = \frac{21}{2}$$ ## Q6: If z varies jointly as x and y, and z = 12 when x = 2 and y = 4, find the constant of variation. #### **Solution:** $\overline{\text{As z varies jointly as } x \text{ and } y}$ $$z \propto xy$$ $$z = kxy \dots equ(i)$$ Put $$z = 12$$, $x = 2$ and $y = 4$ in equ(i) $$12 = k(2)(4)$$ Ex # 3.3 $$12 = k(8)$$ $$\frac{12}{8} = k$$ $$\frac{3}{2} = k$$ $$k = \frac{3}{2}$$ Q7: f y varies jointly as x^2 and z, and y = 6when x = 4 and z = 9 write y as a function of x and z and determine the value of y when x = -8 and z = 12. #### **Solution**: As y varies jointly as x^2 and z So $$v \propto x^2 z$$ $$y = kx^2z$$ equ(i) Put y = 6, x = 4 and z = 9 in equ(i) $$6 = k(4)^2(9)$$ $$6 = k(16)(9)$$ $$\frac{6}{(16)(9)} = k$$ $$\frac{8}{(8)(9)} = k$$ $$\frac{1}{(8)(3)} = k$$ $$\frac{1}{24} = k$$ $$k = \frac{1}{24}$$ #### Now To Find: y when x = 16 and z = 22 $$y = ?$$, $x = 16$ and $z = 22$ Put x = 16, z = 22 and $k = \frac{1}{24}$ in equ(i) $$y = \left(\frac{1}{24}\right)(16)(22)$$ $$y = \left(\frac{1}{24}\right)(-8)^2(12)$$ $$y = \left(\frac{1}{24}\right)(64)(12)$$ $$y = \left(\frac{1}{2}\right)(64)(1)$$ $$y = 32$$ # Q8: If p varies jointly as q and r^2 and inversely as s and t^2 , p = 40 when q = 8 and r = 5, s = 3 and t = 2. Find p in terms of q, r, s and t. Also find the value of when q = -2 and r = 4, s = 3 and t = -1. Solution: As p varies jointly as q and r^2 and inversely as s and t^2 So $$p \propto \frac{qr^2}{st^2}$$ $$p = k \frac{qr^2}{st^2} \dots \dots \text{equ(i)}$$ Put $p = 40, q = 8, r = 3, s = 3 \text{ and}$ $t = 2 \text{ in equ(i)}$ $$40 = k \frac{(8)(5)^2}{(3)(2)^2}$$ $$40 = k \frac{(8)(25)}{(3)(4)}$$ $$40 = k \frac{(2)(25)}{(25)}$$ $$40 = k \frac{(2)(25)}{(3)(1)}$$ $$40 = k \frac{50}{3}$$ $$40 \times \frac{3}{50} = k$$ $$4 \times \frac{3}{5} = k$$ $$\frac{12}{5} = k$$ $$k = \frac{25}{4}$$ Now To Find: $$q = -2 \text{ and } r = 4, s = 3 \text{ and } t = -1$$ $$p =?, q = -2, r = 4, s = 3 \text{ and } t = -1$$ $$Put \ q = -2, r = 4, s = 3, t = -1$$ $$and \ k = \frac{12}{5} \text{ in equ(i)}$$ $$p = \left(\frac{12}{5}\right) \frac{(-2)(4)^2}{(3)(-1)^2}$$ $$p = \left(\frac{12}{5}\right) \frac{(-2)(16)}{(3)(1)}$$ $$p = \left(\frac{4}{5}\right) \frac{(-2)(16)}{(1)(1)}$$ $$p = \frac{-128}{5}$$ ## Chapter #3 #### Ex # 3.4 #### K - Method If a:b::c:d is a proportion, then putting each ratio equal to k Let $$\frac{a}{b} = \frac{c}{d} = k$$ $\frac{a}{b} = k$, $\frac{c}{d} = k$ $a = kb$, $c = kd$ These equations are used to evaluate certain expressions more easily. This method is called K – Method. #### Example # 15: If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ then prove that each of the ratios is equal to $\frac{la + mc + ne}{lb + md + nf}$ #### **Solution:** Let $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k \dots equ(i)$$ $$\frac{a}{b} = k, \quad \frac{c}{d} = k, \quad \frac{e}{f} = k$$ $$a = kb, \quad c = kd, \quad e = kf$$ $$\frac{la + mc + ne}{lb + md + nf} = \frac{lkb + mkd + nkf}{lb + md + nf}$$ $$\frac{la + mc + ne}{lb + md + nf} = \frac{k(lb + md + nf)}{lb + md + nf}$$ $$\frac{la + mc + ne}{lb + md + nf} = k \dots \dots \text{equ(ii)}$$ Thus from equ (i) and equ (ii) $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{la + mc + ne}{lb + md + nf}$$ #### Example # 16: Prove that $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$$ #### **Solution:** Let $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k \dots equ(i)$$ $\frac{a}{b} = k, \quad \frac{c}{d} = k, \quad \frac{e}{f} = k$ $a = kb, \quad c = kd, \quad e = kf$ $\frac{a+c+e}{b+d+f} = \frac{kb+kd+kf}{b+d+f}$ $\frac{a+c+e}{b+d+f} = \frac{k(b+d+f)}{b+d+f}$ 16 #### Ex # 3.4 $$\frac{a+c+e}{b+d+f} = k \dots \dots \text{equ(ii)}$$ Thus
from equ (i) and equ (ii) $$\frac{a+c+e}{b+d+f} = \frac{a+c+e}{b+d+f}$$ #### **Example # 17:** Prove that $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}}$$ #### Solution: Let $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$ equ(i) $\frac{a}{b} = k$, $\frac{c}{d} = k$, $\frac{e}{f} = k$ $$a = kb, c = kd, e = kf$$ $$\sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}} = \sqrt{\frac{(kb)^2 + (kd)^2 + (kf)^2}{b^2 + d^2 + f^2}}$$ $$\sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}} = \sqrt{\frac{k^2b^2 + k^2d^2 + k^2f^2}{b^2 + d^2 + f^2}}$$ $$\sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}} = \sqrt{\frac{k^2(b^2 + d^2 + f^2)}{b^2 + d^2 + f^2}}$$ $$\sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}} = \sqrt{k^2}$$ $$\sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}} = k \dots \dots \text{equ(i)}$$ Thus from equ (i) and equ (ii) $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}}$$ #### Example # 18: If $$\frac{a}{x} = \frac{b}{y} = \frac{c}{z}$$ then prove that $$\frac{x^3}{a^3} = \frac{y^3}{b^3} = \frac{z^3}{c^3} = \frac{3xyz}{abc}$$ #### Solution: Let $$\frac{a}{x} = \frac{b}{y} = \frac{c}{z} = k$$ As each ratio equal to k So ## Chapter #3 #### Ex # 3.4 $$\frac{a}{x} = k, \qquad \frac{b}{y} = k, \qquad \frac{c}{z} = k$$ Now take the reciprocal $$\frac{x}{a} = \frac{1}{k}$$, $\frac{y}{b} = \frac{1}{k}$, $\frac{z}{c} = \frac{1}{k}$ equ(i) To Prove $$\frac{x^3}{a^3} = \frac{y^3}{b^3} = \frac{z^3}{c^3} = \frac{3xyz}{abc}$$ Now Take cube on equ(i) $$\left(\frac{x}{a}\right)^3 = \left(\frac{1}{k}\right)^3, \left(\frac{y}{b}\right)^3 = \left(\frac{1}{k}\right)^3, \left(\frac{z}{c}\right)^3 = \left(\frac{1}{k}\right)^3$$ $$\frac{x^3}{a^3} = \frac{1}{k^3}, \qquad \frac{y^3}{b^3} = \frac{1}{k^3}, \qquad \frac{z^3}{c^3} = \frac{1}{k^3}$$ Now add them $$\frac{x^3}{a^3} + \frac{y^3}{b^3} + \frac{z^3}{c^3} = \frac{1}{k^3} + \frac{1}{k^3} + \frac{1}{k^3}$$ $$\frac{x^3}{a^3} + \frac{y^3}{b^3} + \frac{z^3}{c^3} = \frac{1+1+1}{k^3}$$ $$\frac{x^3}{a^3} + \frac{y^3}{b^3} + \frac{z^3}{c^3} = \frac{3}{k^3} \dots \dots \text{ equ(ii)}$$ Now take the product of equ (i) $\frac{x}{a} \cdot \frac{y}{b} \cdot \frac{z}{c} = \frac{1}{k} \cdot \frac{1}{k} \cdot \frac{1}{k}$ $\frac{xyz}{abc} = \frac{1}{k^3}$ Multiply B.S by 3 $$3 \times \frac{xyz}{abc} = 3 \times \frac{1}{k^3}$$ $$\frac{3xyz}{abc} = \frac{3}{k^3} \dots \dots \text{equ(iii)}$$ From equ (ii) and equ (iii) $$\frac{x^3}{a^3} = \frac{y^3}{b^3} = \frac{z^3}{c^3} = \frac{3xyz}{abc}$$ Page # 65 Q1: If $$\frac{a}{b} = \frac{c}{d}$$ then prove that $$\frac{2a+3b}{2a-3b} = \frac{2c+3d}{2c-3d}$$ Solution: Let $$\frac{a}{b} = \frac{c}{d} = k$$ $\frac{a}{b} = k$, $\frac{c}{d} = k$ $a = kb$, $c = kd$ As we have $$\frac{2a+3b}{2a-3b} = \frac{2c+3d}{2c-3d}$$ 2a + 3b 2kb + 3b L.H.S: $$\frac{2a - 3b}{2a - 3b} = \frac{2kb - 3b}{2kb - 3b}$$ $$\frac{2a + 3b}{2a - 3b} = \frac{b(2k + 3)}{b(2k - 3)}$$ $$\frac{2a + 3b}{2a - 3b} = \frac{2k + 3}{2k - 3}$$ $$\frac{2c + 3d}{2c - 3d} = \frac{2kd + 3d}{2kd - 3d}$$ $$\frac{2c + 3d}{2c - 3d} = \frac{d(2k + 3)}{d(2k - 3)}$$ $$\frac{2c + 3d}{2c - 3d} = \frac{2k + 3}{2k - 3}$$ L.H.S=R.H.S Q1: 1: If $$\frac{a}{b} = \frac{c}{d}$$ then prove that $\frac{pa + qb}{ma - nb} = \frac{pc + qd}{mc - nd}$ Solution: Let $$\frac{a}{b} = \frac{c}{d} = k$$ $\frac{a}{b} = k$, $\frac{c}{d} = k$ $a = kb$, $c = kd$ As we have $$\frac{pa+qb}{ma-nb} = \frac{pc+qd}{mc-nd}$$ L.H.S: $$\frac{pa+qb}{ma-nb} = \frac{pkb+qb}{mkb-nb}$$ $$= \frac{b(pk+q)}{b(mk-n)}$$ $$= \frac{pk+q}{mk-n}$$ ## Chapter #3 Ex # 3.4 R.H.S: $$\frac{pc + qd}{mc - nd} = \frac{pkd + qd}{mkd - nd}$$ $$= \frac{d(pk + q)}{d(mk - n)}$$ $$= \frac{pk + q}{mk - n}$$ L.H.S=R.H.S Q2: Prove that $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}}$$ Let $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k \dots \text{equ(i)}$$ $\frac{a}{b} = k, \quad \frac{c}{d} = k, \quad \frac{e}{f} = k$ $a = kb, \quad c = kd, \quad e = kf$ $$\sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}} = \sqrt{\frac{p(kb)^2 + q(kd)^2 + (kf)^2}{pb^2 + qd^2 + f^2}}$$ $$\sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}} = \sqrt{\frac{pk^2b^2 + qk^2d^2 + k^2f^2}{pb^2 + qd^2 + f^2}}$$ $$\sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}} = \sqrt{\frac{k^2(pb^2 + qd^2 + f^2)}{pb^2 + qd^2 + f^2}}$$ $$\sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}} = \sqrt{k^2}$$ $$\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2} = \sqrt{k^2}$$ $$\sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}} = k \dots \dots \text{equ(ii)}$$ From equ(i) and equ(ii), we get $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \sqrt{\frac{pa^2 + qc^2 + e^2}{pb^2 + qd^2 + f^2}}$$ Q3: If $\frac{x-y}{z} = \frac{y-z}{x} = \frac{z-x}{y}$ then prove that $non-zero\ numbers\ and\ z+y+z\neq 0$ #### Solution: As we have $$\frac{x-y}{z} = \frac{y-z}{x} = \frac{z-x}{y}$$ Now we know that $$\frac{x-y}{z} = \frac{y-z}{x} = \frac{z-x}{y} = \frac{x-y+y-z+z-x}{z+x+y}$$ $$\frac{x-y}{z} = \frac{y-z}{x} = \frac{z-x}{y} = \frac{x-x-y+y-z+z}{x+y+z}$$ $$\frac{x-y}{z} = \frac{y-z}{x} = \frac{z-x}{y} = 0$$ $$\frac{x-y}{z} = 0, \qquad \frac{y-z}{x} = 0, \qquad \frac{z-x}{y} = 0$$ $$x - y = 0 \times z$$, $y - z = 0 \times x$, $z - x = 0 \times y$ $x - y = 0$, $y - z = 0$, $z - x = 0$ $x = y$, $y = z$, $z = x$ x = y, y = z, z = x Now by Transitive Property $$x = y = z$$ **Hence Proved** $$\frac{2y+2z-x}{a} = \frac{2z+2x-y}{b} = \frac{2x+2y-z}{c}$$ then prove that $$\frac{x}{2b+2c-a} = \frac{y}{2c+2a-b} = \frac{z}{2a+2b-c}$$ Solution: Let $\frac{2y + 2z - x}{a} = \frac{2z + 2x - y}{b} = \frac{2x + 2y - z}{c} = k$ So $$\frac{2y + 2z - x}{a} = k$$ $$2y + 2z - x = ak \dots \text{equ(i)}$$ $$\frac{2z + 2x - y}{b} = k$$ $$2z + 2x - y = bk \dots \text{equ(ii)}$$ $$\frac{2x + 2y - z}{c} = k$$ $$2x + 2y - z = ck \dots \text{equ(iii)}$$ Arrange them $$-x + 2y + 2z = ak \dots \text{equ(iv)}$$ $2x - y + 2z = bk \dots \text{equ(v)}$ $2x + 2y - z = ck \dots \text{equ(vi)}$ Multiplied equ (iv) by − 1 x - 2y - 2z = -akMultiplied equ (v) by 2 4x - 2y + 4z = 2bkMultiplied equ (vi) by 2 4x + 4y - 2z = 2ckNow Add them 9x = -ak + 2bk + 2ck9x = k(-a + 2b + 2c) 9x = k(2b + 2c - a) $\frac{x}{2h+2c-a} = \frac{k}{9} \dots \dots \text{equ(vii)}$ Multiplied equ (iv) by 2 -2x + 4y + 4z = 2ak-2x + y - 2z = -bkMultiplied equ (v) by -1Multiplied equ (vi) by 2 4x + 4y - 2z = 2ckNow Add them 9y = 2ak - bk + 2ck9y = k(2a - b + 2c) 9y = k(2c + 2a - b) $\frac{x}{2c+2a-b} = \frac{k}{9} \dots \dots \text{equ(viii)}$ Multiplied equ (iv) by 2 -2x + 4y + 4z = 2akMultiplied equ (v) by 2 4x - 2y + 4z = 2bkMultiplied equ (vi) by -1 -2x - 2y + z = -ck9z = 2ak + 2bk - ckNow Add them 9z = k(2a + 2b - c) 9y = k(2a + 2b - c) $\frac{x}{2a+2b-c} = \frac{k}{9} \dots \dots \text{equ(ix)}$ From equ (vii), (viii) and (ix), we get Q5: Prove that each of its fraction in $\frac{x+y}{a+b} = \frac{y+z}{b+c} = \frac{z+x}{c+a}$ is equal to $\frac{x+y+z}{a+b+c}$ Solution: As we have $$\frac{x+y}{a+b} = \frac{y+z}{b+c} = \frac{z+x}{c+a}$$ Now we know that $$\frac{x+y}{a+b} = \frac{y+z}{b+c} = \frac{z+x}{c+a} = \frac{x+y+y+z+z+x}{a+b+b+c+c+a}$$ $$\frac{x+y}{a+b} = \frac{y+z}{b+c} = \frac{z+x}{c+a} = \frac{2x+2y+2z}{2a+2b+2c}$$ $$\frac{x+y}{a+b} = \frac{y+z}{b+c} = \frac{z+x}{c+a} = \frac{2(x+y+z)}{2(a+b+c)}$$ $$\frac{x+y}{a+b} = \frac{y+z}{b+c} = \frac{z+x}{c+a} = \frac{x+y+z}{a+b+c}$$ **Hence Proved** Ex # 3.4 Q6: If $$\frac{bz + cy}{b - c} = \frac{cx + az}{c - a} = \frac{ay + bx}{a - b}$$ then $(a + b + c)(x + y + z) = ax + by + cz$ $$\frac{bz + cy}{b - c} = \frac{cx + az}{c - a} = \frac{ay + bx}{a - b} = k$$ $$\frac{bz + cy}{b - c} = k, \quad \frac{cx + az}{c - a} = k, \quad \frac{ay + bx}{a - b} = k$$ $$bz + cy = k(b - c)$$ $$bz + cy = k(b - c)$$ $$bz + cy = kb - kc$$ $$cx + az = k(c - a)$$ $$cx + az = kc - ka$$ $$ay + bx = k(a - b)$$ $$ay + bx = ka - kb$$ Add equ (i), (ii) and (iii) $$bz + cy + cx + az + ay + bx = kb - kc + kc - ka + ka - kb$$ $$bz + cy + cx + az + ay + bx = 0$$ Add ax, by, cz on B. S $$bz + cy + cx + az + ay + bx + ax + by + cz = ax + by + cz$$ Re-arrange it $$ax + ay + az + bx + by + bz + cx + cy + cz = ax + by + cz$$ $$a(x + y + z) + b(x + y + z) + c(x + y + z) = ax + by + cz$$ $$(x + y + z)(a + b + c) = ax + by + cz$$ $$(a+b+c)(x+y+z) = ax + by + cz$$ Q7: If $$\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c}$$ then $(b-c)x + (c-a)y + (a-b)z = 0$ #### Solution: Let $$\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c} = k$$ $\frac{x}{b+c-a} = k$, $\frac{y}{c+a-b} = k$, $\frac{z}{a+b-c} = k$ $\frac{x}{b+c-a} = k$ $x = k(b+c-a)$ $x = kb+kc-ka$ $$\frac{y}{c+a-b} = k$$ $$y = k(c + a - b)$$ $$y = kc + ka - kb$$ $$\frac{z}{a+b-c}=k$$ $$z = k(a + b - c)$$ $$z = ka + kb - kc$$ Ex # 3.4 L.H.S: $$(b-c)x + (c-a)y + (a-b)z$$ Put the values of x, y and z $$(b-c)(kb+kc-ka) + (c-a)(kc+ka-kb) + (a-b)(ka+kb-kc)$$ $$= kb^2 + kbc - kab - kbc - kc^2 + kac + kc^2 + kac - kbc - kac - ka^2 + kab + ka^2 + kab - kac - kab - kb^2 + kbc$$ = 0 R.H.S Q8: If $$2x + 3y$$: $3y + 4z$: $4z + 5x = 4a - 5b$: $3b - a$: $2b - 3a$ then $7x + 6y + 8z = 0$ #### **Solution:** As we know that a:b:c=x:y:z Then a+b+c=x+y+c So $$2x + 3y$$: $3y + 4z$: $4z + 5x = 4a - 5b$: $3b - a$: $2b - 3a$ $$2x + 3y + 3y + 4z + 4z + 5x = 4a - 5b + 3b - a + 2b - 3a$$ $$2x + 5x + 3y + 3y + 4z + 4z = 4a - a - 3a - 5b + 3b + 2b$$ $$7x + 6y + 8z = 3a - 3a - 5b + 5b$$ $$7x + 6y + 8z = 0$$ If $\frac{a-b}{d-e} = \frac{b-c}{e-f}$ then each of them is equal to $\frac{b\{(f-d)+(cd-af)\}}{e(f-d)}$ Solution: Let $$\frac{a-b}{d-e} = \frac{b-c}{e-f} = k$$ $$\frac{a-b}{d-e} = k, \qquad \frac{b-c}{e-f} = k$$ $$\frac{d}{d-e} = k, \qquad \frac{d}{e-f} = k$$ $$a - b = k(d - e)$$ $$a - b = dk - ek$$ Multiply B.S by f $$f(a-b) = f(dk - ek)$$ $$af - bf = dfk - efk$$equ(i) **Also** $$b-c=k(e-f)$$ $$b - c = ek - fk$$ Multiply B.S by d $$d(b-c) = d(ek - fk)$$ $$bd - cd = dek - dfk$$ equ(ii) Add equ(i) and equ(ii) $$af - bf + bd - cd = dfk - efk + dek - dfk$$ $$af - bf + bd - cd = -efk + dek$$ Multiply B.S
by -1 $$-1(af - bf + bd - cd) = -1(-efk + dek)$$ $$-af + bf - bd + cd = efk - dek$$ $$bf - bd + cd - af = k(ef - de)$$ $$\frac{b(f-d) + cd - af}{cf + dc} = k$$ $$\frac{b(f-d) + (cd - af)}{e(f-d)} = k$$ #### Example 19: A stone is dropped from the top of a hill. The distance it falls is proportional to the square of the time of fall. The stone falls 19.6 m after 2 seconds, how far does it fall after 3 seconds? #### **Solution:** As there is direct variation. Thus $$d \propto t^2$$ $$d \propto t^2 \dots \text{equ(i)}$$ Put $$d = 19.6$$ and $t = 2$ in equ(i) $$19.6 = k(2)^2$$ $$19.6 = k(4)$$ $$\frac{19.6}{4} = k$$ $$4.9 = k$$ $$k = 4.9$$ #### Now #### To Find: $$d$$ when $t = 3$ $$d = ?$$ and $t = 3$ Put $$t = 3$$ and $k = 4.9$ in equ(i) $$d = (4.9)(3)^2$$ $$d = (4.9)(9)$$ $$d = 44.1$$ Thus it has fallen 44.1 m after 3 seconds #### Example 20: Height of an image y on a screen varies directly as distance \boldsymbol{x} of the projector from the screen. Height of the image is 20 cm when distance of the projector from the screen is 100 cm. At what distance should the projector kept from the screen so that the height of an image on the screen be 15 cm. #### **Solution:** As Height of an image = y And Distance of projector = x As there is direct variation. Thus $$y \propto x$$ $$y = kx \dots equ(i)$$ Put x = 100 and y = 20 in equ(i) $$20 = k(100)$$ $$\frac{20}{100} = \frac{k(100)}{100}$$ ## Chapter #3 Ex # 3.5 $$\frac{1}{k} = k$$ $$k = \frac{1}{5}$$ Now Put $$y = 15$$ and $k = \frac{1}{5}$ in equ(i) $$15 = \frac{1}{5}(x)$$ $$5 \times 15 = x$$ $$75 = x$$ $$x = 75$$ Thus Distance of projectro from screen = 75 cm #### Example 21: The ratio of the mass of sand to cement in a particular type of concrete is 4.8:2. If 6 kg of sand are used, how much cement is needed? #### **Solution:** Let the cement required = x kg Now the ratio between sand and cement is given by: As there is direct variation So $$\frac{4.8}{6} = \frac{2}{x}$$ By cross multiplication $$4.8 \times x = 2 \times 6$$ $$4.8x = 12$$ Divide B. S by 4.8 $$\frac{4.8x}{4.8} = \frac{12}{4.8}$$ $$x = 2.5$$ Thus the cement required = 2.5 kg #### Example 22: 4 people can paint a fence in 3 hours. How long will it take 6 people to paint it? How many people are needed to complete the job in half an hour? #### **Solution**: As Number of people = P And Time to complete work = T As there is Inverse variation $$T \propto \frac{1}{P}$$ $$T = \frac{k}{P} \dots \dots \text{equ(i)}$$ Put $$T = 3$$ and $P = 4$ in equ(i) $$3 = \frac{k}{4}$$ $$3 \times 4 = k$$ $$12 = k$$ $$k = 12$$ Now To Find: T when P = 10 $$T = ?, P = 6$$ Put P = 6 and k = 12 in equ(i) $$T = \frac{12}{6}$$ T = 2 Thus Time to complete work = 2 hrs Now again To Find: $$P$$ when $T = \frac{1}{2}$ $$P = ?, T = 6$$ Put T = 6 and k = 12 in equ(i) $$\frac{1}{2} = \frac{12}{P}$$ #### **By Cross Multiplication** $$1 \times P = 12 \times 2$$ $$P = 24$$ Thus Number of people required = 24 ## Ex # 3.5 Page # 68 Q1: A hedge is made of wooden planks. The thickness (T) of the hedge varies directly as number of planks (N). 4 planks make 12 cm thick edge. Find - (i) Thickness of the hedge when number of planks is 6. - (ii) Number of planks when thickness of the hedge is 9cm Solution: As thickness of the hedge = T And number of planks = N As there is direct variation. Thus $T \propto N$ $T = kN \dots equ(i)$ Put T = 12 and N = 12 in equ(i) 12 = k(4) Divide B. S by 4 $$\frac{12}{4} = \frac{k(4)}{4}$$ $$3 = k$$ $$k = 3$$ Now To Find: T when N = 6 $$T = ?, N = 6$$ Put N = 6 and k = 3 in equ(i) $$T = 3(6)$$ $$T = 18$$ Thus thickness of the hedge = 18 cm Now again To Find: N when T = 9 $$N = ?.T = 9$$ Put T = 9 and k = 3 in equ(i) 9 = (3)N Divide B. S by 3 $$\frac{9}{3} = \frac{(3)N}{3}$$ $$3 = N$$ $$N = 3$$ Also number of planks = 3 Q2: In a fountain, the pressure "P" of water at any internal point varies directly as depth 'd' from the surface. Pressure is 51 Newton/cm² when depth is 3cm. find pressure when depth is 7cm. #### **Solution:** As Pressure = P And depth = d As there is direct variation. Thus $P \propto d$ $P = kd \dots equ(i)$ Put P = 51 and d = 3 in equ(i) 51 = k(3) #### Divide B. S by 3 $$\frac{51}{3} = \frac{k(3)}{3}$$ $$17 = k$$ $$k = 17$$ #### Now To Find: P when d = 7 $$P = ?, d = 7$$ Put d = 7 and k = 17 in equ(i) $$P = 17(7)$$ $$P = 119$$ Thus Pressure = 119 Newton/cm^2 Q3: Pressure P of gas in a container varies directly as temperature T. When pressure is $50 \ Newton/m^2$, temperature is $75 \ ^{\circ}$ C. Find the pressure when temperature is $150 \ ^{\circ}$ C. #### **Solution:** As Pressure = P And Temperature = T As there is direct variation. Thus $P \propto T$ $P = kT \dots equ(i)$ Put P = 50 and T = 75 in equ(i) 50 = k(75) #### Divide B. S by 75 $$\frac{50}{75} = \frac{k(75)}{75}$$ $$\frac{2}{2} = k$$ $$k = \frac{2}{3}$$ ## Chapter #3 #### Ex # 3.5 Now To Find: P when T = 150 $$P = ?, T = 150$$ Put T = 150 and $$k = \frac{2}{3}$$ in equ(i) $$P = \frac{2}{3}(150)$$ $$P = 2(50)$$ $$P = 100$$ Thus Pressure = 100 Newton/m^2 Q4: If 8 persons complete a work in 10 days then how many days would 10 persons take to complete same work? #### **Solution:** As Number of persons = P And number of Days = N As there is Inverse variation $$N \propto \frac{1}{P}$$ $$N = \frac{k}{P}$$ equ(i) Put $$N = 10$$ and $P = 8$ in equ(i) $$8 = \frac{k}{10}$$ $$8 \times 10 = k$$ $$80 = k$$ $$k = 80$$ Now To Find: N when P = 10 $$N = ?, P = 10$$ Put $$P = 10$$ and $k = 80$ in equ(i) $$N = \frac{80}{10}$$ $$N = 8$$ Thus Number of days = 8 #### Ex # 3.5 Q5: Volume of gas 'V' varies inversely as pressure 'P'. $P = 300 \text{ N/m}^2$ when $V = 4m^3$. Find pressure when $V = 3m^3$. #### **Solution:** As Volume = V And Pressure = P As there is Inverse variation $$P \propto \frac{1}{V}$$ $$P = \frac{k}{V} \dots \dots \text{ equ(i)}$$ Put P = 300 and V = 4 in equ(i) $$300 = \frac{k}{4}$$ $$300 \times 4 = k$$ $$1200 = k$$ $$k = 1200$$ #### Now #### To Find: $$P$$ when $V = 3$ $$P = ?, V = 3$$ Put $$V = 3$$ and $k = 1200$ in equ(i) $$P = \frac{1200}{3}$$ $$P = 400$$ Thus Pressure = 400 N/m^2 ## Q6: Attraction force 'F' between two magnets vary inversely as square of the distance 'd' between them. F is 18 Newton when d is 2cm. find the distance when attraction force is 2 Newton. #### Solution: As Force = F And Distance = d As there is Inverse variation $$F \propto \frac{1}{d^2}$$ $$F = \frac{k}{d^2} \dots \dots \text{ equ(i)}$$ $$\text{Put F} = 18 \text{ and d} = 2 \text{ in equ(i)}$$ $$18 = \frac{k}{(2)^2}$$ $$18 = \frac{k}{4}$$ $$18 \times 4 = k$$ #### Ex # 3.5 $$72 = k$$ $$k = 72$$ Now To Find: d when F = 2 $$d = ?, F = 2$$ Put F = 2 and k = 72 in equ(i) $$2 = \frac{72}{d^2}$$ $$d^2 = \frac{72}{2}$$ $$d^2 = 36$$ #### Taking square on B.S $$\sqrt{d^2} = \sqrt{36}$$ $$d = 6$$ **O7**: Thus Distance between magnets = 6cm The volume of a right circular cylinder varies jointly as the height and the square of the radius. The volume of a right circular cylinder, with radius 4centimeters and height 7centimeters, is 352 cm³. Find the volume of another cylinder with radius 8 centimeters and height 14centimeters. #### Solution: Let Volume of right circular cylinder = VAnd Height of right circular cylinder = hRadius of right circular cylinder = r #### According to condition V varies jointly as h and r^2 So $$V \propto hr^2$$ $$V = khr^2 \dots \text{equ(i)}$$ Put V = 352, h = 7 and r = 4 in equ(i) $$352 = k(7)(4)^2$$ $$352 = k(7)(16)$$ $$\frac{352}{(7)(16)} = k$$ $$\frac{22}{7} = k$$ $$k = \frac{22}{7}$$ #### Now To Find: $$V$$ when $h = 14$ and $r = 8$ $$V = ?, h = 14 \text{ and } r = 8$$ Put $$h = 14$$, $r = 8$ and $k = \frac{22}{7}$ in equ(i) $$V = \left(\frac{22}{7}\right)(14)(8)^2$$ $$V = \left(\frac{22}{7}\right)(14)(64)$$ $$V = (22)(2)(64)$$ $$V = 2816$$ Thus volume of a right circular cylinder = 2816cm³ ## Review Ex#3 #### Page # 69-70 Q2: Find the constant of variation when $s \propto t^2$ and t = 10 when s = 5 #### **Solution**: As there is direct variation $$s \propto t^2$$ $$s = kt^2$$ equ(i) Put s = 5 and t = 10 in equ(i) $$5 = k(10)^2$$ $$5 = k(100)$$ $$\frac{5}{100} = \frac{k(100)}{100}$$ $$\frac{1}{20} = k$$ $$k = \frac{1}{20}$$ Q3: $$y \propto \frac{1}{x^2}$$ and $y = 4$ When $x = 3$. Find x when $y = 9$ #### Solution: As there is Inverse variation $$y \propto \frac{1}{x^2}$$ $y = \frac{k}{x^2} \dots \dots \text{equ(i)}$ Put $$x = 3$$ and $y = 4$ in equ(i) $$4 = \frac{k}{(3)^2}$$ ## Chapter #3 #### Review Ex#3 $$4 \times 9 = k$$ $$36 = k$$ $$k = 36$$ Now To Find: $$x$$ when $y = 9$ $$x = ?, y = 9$$ Put y = 9 and k = 36 in equ(i) $$9 = \frac{36}{x^2}$$ $$x^2 = \frac{36}{9}$$ $$x^2 = 4$$ #### Taking square root on B. S $$\sqrt{x^2} = \pm \sqrt{4}$$ $$x = \pm 2$$ Q4: Pressure of gas in the closed vessel varies directly with the temperature. If pressure is 150 unit the temperature is 70 units. What will be the pressure if temperature is 140 units? Solution: #### As Pressure = P And Temperature = T As there is direct variation. Thus $$P \propto T$$ $$P = kT \dots equ(i)$$ Put P = 150 and T = 70 in equ(i) $$150 = k(70)$$ #### Divide B. S by 70 $$\frac{150}{70} = \frac{k(70)}{70}$$ $$\frac{15}{7} = k$$ $$k = \frac{15}{7}$$ Now To Find: $$P = ?, T = 140$$ Put T = 140 and $$k = \frac{15}{7}$$ in equ(i) $$P = \frac{15}{7}(140)$$ $$P = 15(20)$$ $$P = 300$$ Thus Pressure = 300 units #### Review Ex#3 5: In an electric circuit, current varies inversely as resistance. When current is 44 amp, the resistance is 30 ohm. How much current will flow if resistance becomes 22 ohm. #### Solution: As Electric current = I And Resistance = R As there is Inverse variation $$I \propto \frac{1}{R}$$ $$I = \frac{k}{R} \dots \dots \text{equ(i)}$$ Put $I = 44$ and $R = 30$ in equ(i) $$44 = \frac{k}{30}$$ $$44 \times 30 = k$$ $$1320 = k$$ k = 1320 Now To Find: I when R = 22 I = ?, R = 22 Put R = 22 and k = 1320 in equ(i) $$I = \frac{1320}{22}$$ $$I = 60$$ Thus Electric current = 60 amp 6: If a varies jointly as b and
square root of c. If a = 21 when b = 5 and c = 36, Find a when b = 9 and c = 225 #### **Solution:** As a varies jointly as b and square root of c So $$a \propto b\sqrt{c}$$ $$a = kb\sqrt{c} \quad \dots \quad \text{equ(i)}$$ Put $a = 21, b = 5 \text{ and } c = 36 \text{ in equ(i)}$ $$21 = k(5)\sqrt{36}$$ $$21 = k(5)(6)$$ $$\frac{21}{(5)(6)} = k$$ $$\frac{7}{(5)(2)} = k$$ $$\frac{7}{10} = k$$ #### Review Ex#3 $$k = \frac{7}{10}$$ Now To Find: a when b = 9 and c = 225a = ?, b = 9 and c = 225 Put b = 9, c = 225 and $k = \frac{7}{10}$ in equ(i) $$a = \left(\frac{7}{10}\right)(9)\sqrt{225}$$ $$a = \left(\frac{7}{10}\right)(9)(15)$$ $$a = \frac{945}{10}$$ $$a = 94.5$$ ## Q7: What number should be added to each of number 3, 8, 11 and 20 to make them in proportion? #### Solution: Suppose the number = x As *x* is added to each of number So according to condition 3 + x : 8 + x = 11 + x : 20 + x Product of mean = Product of extreme $$(8+x)(11+x) = (3+x)(20+x)$$ $$88 + 8x + 11x + x^2 = 60 + 3x + 20x + x^2$$ $$88 + 19x + x^2 = 60 + 23x + x^2$$ $$x^2 + 19x + 88 = x^2 + 23x + 60$$ $$x^2 - x^2 + 19x - 23x + 88 - 60 = 0$$ $$-4x + 28 = 0$$ $$-4x = -28$$ Divide B. S by -4 $$\frac{-4x}{-4} = \frac{-28}{-4}$$ $$x = 7$$ Thus 7 should be added to each number So, number becomes $$3 + 7 : 8 + 7 = 11 + 7 : 20 + 7$$ $$10:15=18:27$$ #### Review Ex#3 ## 8: What number should be subtracted to each f the number 6, 8, 7 and 11 so that the remaining numbers are in proportion? #### **Solution:** Suppose the number = x As *x* is subtracted to each of number So according to condition $$6 - x : 8 - x = 7 - x : 11 - x$$ Product of mean = Product of extreme $$(8-x)(7-x) = (6-x)(11-x)$$ $$56 - 8x - 7x + x^2 = 66 - 6x - 11x + x^2$$ $$56 - 15x + x^2 = 66 - 17x + x^2$$ $$x^2 - 15x + 56 = x^2 - 17x + 66$$ $$x^2 - x^2 - 15x + 17x + 56 - 66 = 0$$ $$2x - 10 = 0$$ $$2x = 10$$ Divide B. S by 2 $$\frac{2x}{2} = \frac{10}{2}$$ $$x = 5$$ Thus 5 should be subtracted to each number So, number becomes $$6 - 5 : 8 - 5 = 7 - 5 : 11 - 5$$ $$1:3=2:6$$ ## 9: The ratio between two numbers is 8: 3 and their difference is 20. Find the numbers. #### **Solution:** Let the two numbers are x and y According to first condition $$x : y = 8 : 3$$ $$\frac{x}{y} = \frac{8}{3}$$ By cross multiplication $$3x = 8y \dots equ(i)$$ Now according to second condition $$x - y = 20$$ $$x = 20 + y$$ equ(ii) Put the value of x in equ(i) $$3(20 + y) = 8y$$ $$60 + 3y = 8y$$ $$60 = 8y - 3y$$ $$60 = 5v$$ ## Chapter #3 #### Review Ex#3 $$12 = y$$ 60 $$y = 12$$ Put the value of y in equ(ii) $$x = 20 + 12$$ $$x = 32$$ Thus the required numbers are 32 and 12 is 8:3 and their difference is 20. #### OR *Let first number* = 8x Second number = 3x According to condition $$8x - 3x = 20$$ $$5x = 20$$ $$a = \frac{20}{5}$$ $$x = 4$$ *Now first number* = 8x = 8(4) = 32 **Second** number = 3x = 3(4) = 12 Thus, the required numbers are 32 and 12 is 8:3 and their difference is 20. ## 10: Find the number in continued proportion such that their sum is 14 and sum of their squared is 84. #### **Solution:** Let x, y and z be the three numbers As they are in continued proportion $$x : y = y : z$$ $$y^2 = xz$$ equ (i) According to conditions $$x + y + z = 14$$ equ (ii) $$x^2 + y^2 + z^2 = 84$$ equ (iii) Put $$y^2 = xz$$ in equ (iii) $$x^2 + xz + z^2 = 84$$ equ (iv) From equ(ii) $$x + z = 14 - y$$ equ (v) Taking square on B.S $$(x+z)^2 = (14-y)^2$$ $$z^2 + 2xz + z^2 = 196 - 28y + y^2$$ Put $$v^2 = xz$$ $$z^2 + 2xz + z^2 = 196 - 28y + xz$$ $$z^2 + 2xz - xz + z^2 = 196 - 28y$$ #### Review Ex#3 $$z^2 + xz + z^2 = 196 - 28y$$ equ (vi) Compare equ(iv) and equ(vi) $$84 = 196 - 28y$$ $$84 - 196 = -28y$$ $$-112 = -28y$$ $$4 = v$$ $$y = 4$$ Put y = 4 in equ(i) and equ(ii) $$(4)^2 = xz$$ $$16 = xz$$ $$xz = 16 \dots \text{equ (vii)}$$ #### Now $$x + 4 + z = 14$$ $$x + z = 14 - 4$$ $$x + z = 10$$ $$z = 10 - x$$ equ (viii) Put equ(viii) in equ(vii) $$x(10-x)=16$$ $$10x - x^2 = 16$$ $$0 = x^2 - 10x + 16$$ $$x^2 - 10x + 16 = 0$$ $$x^2 - 2x - 8x + 16 = 0$$ $$x(x-2) - 8(x-2) = 0$$ $$(x-2)(x-8)=0$$ $$x - 2 = 0$$ or $x - 8 = 0$ $$x = 2$$ or $x = 8$ Now Put x = 2 in equ(viii) $$z = 10 - 2$$ $$z = 8$$ Also Put x = 8 in equ(viii) $$z = 10 - 8$$ $$z = 2$$ Thus the required numbers are: OR ## 11: The mean proportion of two numbers is 6 and their sum is 13. Find the number. #### **Solution:** Let x and y be the numbers As the mean proportion=6 $$x : 6 = 6 : v$$ $$36 = xy$$ ## Chapter #3 #### Review Ex#3 $$xy = 36 \dots \text{equ (i)}$$ According to condition $$x + y = 13$$ $$y = 13 - x$$ equ (ii) Put the value of *x* in equ(i) $$x(13 - x) = 36$$ $$13x - x^2 = 36$$ $$0 = x^2 - 13x + 36$$ $$x^2 - 13x + 36 = 0$$ $$x^2 - 4x - 9x + 36 = 0$$ $$x(x-4) - 9(x-4) = 0$$ $$(x-4)(x-9)=0$$ $$x - 4 = 0$$ or $x - 9 = 0$ $$x = 4$$ or $x = 9$ Now Put x = 4 in equ(iii) $$y = 13 - 4$$ $$y = 9$$ Also Put x = 9 in equ(iii) $$y = 13 - 9$$ $$y = 4$$ Thus the required numbers are: #### 4 and 9 OR 9 and 4 ## 12: Find angle of a triangle which are in ratio 3:4:5 Solution: As triangle has three angles Also we know that Sum of angles=180 As ratio of given triangle=3:4:5 Sum the Ratio = $$3 + 4 + 5$$ $$= 12$$ First Angle = $$\frac{3}{12} \times 180^{\circ}$$ = $3 \times 15^{\circ}$ = 45° Second Angle = $$\frac{4}{12} \times 180^{\circ}$$ = $4 \times 15^{\circ}$ $$=60^{0}$$ Third Angle = $$\frac{5}{12} \times 180^{\circ}$$ $$= 5 \times 15^{0}$$ $$=75^{0}$$ ### Review Ex#3 ## 13: If $\frac{a}{b} = \frac{c}{d}$ then prove that #### Solution: As $$\frac{a}{b} = \frac{c}{d}$$ Now $\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$ So $\frac{a}{b} = \frac{a+c}{b+d}$ equ(i) And $\frac{c}{d} = \frac{a+c}{b+d}$ equ(ii) As $\frac{a}{b} = \frac{a+c}{b+d}$ Multiply B. S by $\frac{c}{d}$ $$\frac{a}{b} \times \frac{c}{d} = \left(\frac{c}{d}\right) \left(\frac{a+c}{b+d}\right)$$ As $$\frac{c}{d} = \frac{a+c}{b+d}$$ So $$\frac{ac}{bd} = \left(\frac{a+c}{b+d}\right) \left(\frac{a+c}{b+d}\right)$$ Now multiply B. S by $\left(\frac{a+c}{b+d}\right)$ $$\frac{ac}{bd} \left(\frac{a+c}{b+d} \right) = \left(\frac{a+c}{b+d} \right) \left(\frac{a+c}{b+d} \right) \left(\frac{a+c}{b+d} \right)$$ $$\frac{ac(a+c)}{bd(b+d)} = \left(\frac{a+c}{b+d} \right)^3$$ ## If a, b, c are in continued proportion then prove that $\frac{a}{c} = \frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{a^2 - b^2}{b^2 - c^2}$ #### Solution: As a, b and c are in continued proportion $$a: b = b: c$$ $$\frac{a}{b} = \frac{b}{c}$$ Let $$\frac{a}{b} = \frac{b}{c} = k$$ $$\frac{a}{b} = k, \qquad \frac{b}{c} = k$$ $$a = kb$$... equ (i), $b = kc$... equ (ii) Put b = kc in equ(i) $$a = k(kc)$$ $$a = k^2 c$$ equ (iii) ## Chapter #3 #### Review Ex#3 $$\frac{a}{c} = k^2$$ equ (iv) $$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{(k^2c)^2 + (k^2c)(kc) + (kc)^2}{(kc)^2 + (kc)c + c^2}$$ $$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{k^4c^2 + k^3c^2 + k^2c^2}{k^2c^2 + kc^2 + c^2}$$ $$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{k^2c^2(k^2 + k + 1)}{c^2(k^2 + k + 1)}$$ $$\frac{a^2 + ab + b^2}{b^2 + bc + c^2} = k^2 \quad \dots \dots \text{equ (v)}$$ $$\frac{a^2 - b^2}{b^2 - c^2} = \frac{(k^2 c)^2 - (kc)^2}{(kc)^2 - c^2}$$ $$\frac{a^2 - b^2}{b^2 - c^2} = \frac{k^4 c^2 - k^2 c^2}{k^2 c^2 - c^2}$$ $$\frac{a^2 - b^2}{b^2 - c^2} = \frac{k^2 c^2 (k^2 - 1)}{c^2 (k^2 - 1)}$$ $$\frac{a^2 - b^2}{b^2 - c^2} = k^2 \quad \dots \quad \text{equ (vi)}$$ From equ(iv), equ(v) and equ(vi) $$\frac{a}{c} = \frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{a^2 - b^2}{b^2 - c^2}$$ | | 10 | | |--|----|---| · | | | | • | | | | | ## https://tehkals.com/ ## Chapter #3 Review Ex #3 Q15: If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ then prove that $\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$ $$b^3 + d^3 + f^3$$ **Solution:** Let $$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$ $\frac{a}{b} = k$, $\frac{c}{d} = k$, $\frac{e}{f} = k$ $a = kb$, $c = kd$, $e = kf$ To prove: $$\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$$ $$\frac{a^3+c^3+e^3}{b^3+d^3+f^3} = \frac{(kb)^3+(kd)^3+(kf)^3}{b^3+d^3+f^3}$$ $$\frac{a^3+c^3+e^3}{b^3+d^3+f^3} = \frac{k^3b^3+k^3d^3+k^3f^3}{b^3+d^3+f^3}$$ $$\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{k^3(b^3 + d^3 + f^3)}{b^3 + d^3 + f^3}$$ $$\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = k^3$$ Also R.H.S: $$\frac{ace}{bdf} = \frac{(kb)(kd)(kf)}{bdf}$$ $$\frac{ace}{bdf} = \frac{k^3bdf}{bdf}$$ $$\frac{ace}{bdf} = k^3$$ Thus L.H.S=R.H.S $$\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$$ Hence Proved: # **MATHEMATICS** Class 10th (KPK) Chapter # 4 Partial Fraction | NAME: | | - | |----------|----------|---| | F.NAME: | | _ | | CLASS: | SECTION: | | | ROLL #: | SUBJECT: | | | ADDRESS: | | | | | | | | SCHOOL: | | | ## **UNIT #4** ### **PARTIAL FRACTIONS** #### **Partial Fraction:** A procedure which does splitting up a fraction into two or more fractions with only one factors in the denominator is called partial fraction. In other words, a set of fractions whose algebraic sum is a given fraction is called partial fraction. #### **Rational Fraction:** A rational function can be written in the form of: $$f(x) = \frac{P(x)}{Q(x)}$$ Where P (x) and Q (x) are polynomials, where Q $(x) \neq 0$ Proper rational fraction: A rational fraction is proper fraction, if degree of numerator P(x) is less than the degree of denominator Q(x). Example $$\frac{1}{x+1}$$, $\frac{2x}{x^2+2}$, $\frac{x^2+x-3}{x^3+x^2-x+1}$ **Improper rational fraction** A rational fraction is an improper fraction, if degree of numerator P(x) is greater than or equal to the degree of denominator Q(x). Example $$\frac{x^3+4}{(x+1)(x+2)}, \quad \frac{x}{2x+2}, \quad \frac{x^2+x-3}{x^2-x+1}, \quad \frac{x^3+x^2+x-3}{x^2-x+1}$$ #### **Note:** Any improper rational fraction can be reduced into sum of polynomials and rational fraction by large
division. **Example:** $$\frac{2x^2+1}{x-1}$$ **Solution:** $$\begin{array}{r} 2x + 2 \\ x - 1 \overline{\smash)2x^2 + 1} \\ \underline{\pm 2x^2 \quad \mp 2x} \\ 2x + 1 \\ \underline{\pm 2x \mp 2} \\ 3 \end{array}$$ $$\frac{2x^2 + 1}{x - 1} = 2x + 2 + \frac{3}{x - 1}$$ #### Exercise # 4.1 #### **Resolution of fraction into partial fraction** Resolution of rational fraction $\frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$ into partial fraction depends upon the factors of denominator Q(x) Case # 1: Let proper fraction $$\frac{P(x)}{O(x)}$$ given Factorize the polynomial Q(x) in the denominator if it is not factorized. $$\frac{P(x)}{Q(x)} = \frac{A}{x+a} + \frac{B}{x+b}$$ Example # 1: Resolve $\frac{1}{(x+1)(x+2)}$ into partial fraction. **Solution**: $$\frac{1}{(x+1)(x+2)}$$ Let $$\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$ equ(i) Multiply equ (i) by $$(x + 1)(x + 2)$$ $$\frac{1}{(x+1)(x+2)} \times (x+1)(x+2) = \frac{A}{x+1} \times (x+1)(x+2) + \frac{B}{x+2} \times (x+1)(x+2)$$ $$1 = A(x + 2) + B(x + 1)$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$1 = A(-1+2) + B(0)$$ $$1 = A(1) + 0$$ $$1 = A$$ $$A = 1$$ Put $$x + 2 = 0 \Rightarrow x = -2$$ in equ (ii) $$1 = A(0) + B(-2 + 1)$$ $$1 = 0 + B(-1)$$ $$1 = -B$$ $$-B = 1$$ $$B = -1$$ Put the values of A and B in equ (i) $$\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} + \frac{-1}{x+2}$$ $$\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$ $\frac{3x+2}{x^2-x-2} = \frac{3x+2}{(x+1)(x-2)}$ #### Exercise # 4.1 ## Example # 2: Find partial fraction of $\frac{3x+2}{x^2-x-2}$ **Solution:** $$\frac{3x+2}{x^2-x-2}$$ Now Let $$\frac{3x+2}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} \dots equ(i)$$ Multiply equ (i) by (x + 1)(x - 2) $$\frac{3x+2}{(x+1)(x-2)} \times (x+1)(x-2) = \frac{A}{x+1} \times (x+1)(x-2) + \frac{B}{x-2} \times (x+1)(x-2)$$ $$3x + 2 = A(x - 2) + B(x + 1)$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$3(-1) + 2 = A(-1 - 2) + B(0)$$ $$-3 + 2 = A(-3) + 0$$ $$-1 = -3A$$ $$\frac{-1}{-3} = A$$ $$\frac{1}{3} = A$$ $$\Delta - \frac{1}{4}$$ Put $x - 2 = 0 \Rightarrow x = 2$ in equ (ii) $$3(2) + 2 = A(0) + B(2 + 1)$$ $$6 + 2 = 0 + B(3)$$ $$8 = 3B$$ $$\frac{8}{3} = B$$ $$B = \frac{8}{3}$$ Put the values of A and B in equ (i) $$\frac{3x+2}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}$$ $$\frac{3x+2}{(x+1)(x-2)} = \frac{\frac{1}{3}}{x+1} + \frac{\frac{8}{3}}{x-2}$$ $$\frac{3x+2}{(x+1)(x-2)} = \frac{1}{3(x+1)} + \frac{8}{2(x-2)}$$ ## Example # 3: Find partial fraction of $\frac{x}{(x+1)^2}$ **Solution**: $$\frac{x}{(x+1)^2}$$ Let $$\frac{x}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}$$ equ(i) Multiply equ (i) by $(x + 1)^2$ $$\frac{x}{(x+1)^2} \times (x+1)^2 = \frac{A}{x+1} \times (x+1)^2 + \frac{B}{(x+1)^2} \times (x+1)^2$$ $$x = A(x + 1) + B$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$-1 = A(0) + B$$ $$-1 = B$$ $$B = -1$$ $$x = A(x+1) + B$$ $$x = Ax + A + B$$ $$x = Ax + (A + B)$$ By comparing the coefficients of x, we get $$A = 1$$ Put the values of A and B in equ (i) $$\frac{x}{(x+1)^2} = \frac{1}{x+1} + \frac{-1}{(x+1)^2}$$ $$\frac{x}{(x+1)^2} = \frac{1}{x+1} - \frac{1}{(x+1)^2}$$ # Example # 4: Find partial fraction of $\frac{2x^2+1}{(x-2)^2(x+3)}$ #### Solution: $$\frac{2x^2 + 1}{(x-2)^2(x+3)}$$ $$\frac{2x^2+1}{(x-2)^2(x+3)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x+3} \quad \dots \cdot \text{equ(i)}$$ Multiply equ (i) by $(x + 1)(x - 1)^2$, we get $$2x^2 + 1 = A(x-2)(x+3) + B(x+3) + C(x-2)^2$$equ(ii) Put $$x - 2 = 0 \Rightarrow x = 2$$ in equ (ii) $$2(2)^2 + 1 = A(0)(2+3) + B(2+3) + C(0)^2$$ $$2(4) + 1 = 0 + B(5) + 0$$ $$8 + 1 = 5B$$ $$9 = 5B$$ $$\frac{9}{5} = B$$ $$B = \frac{9}{5}$$ Put $$x + 3 = 0 \Rightarrow x = -3$$ in equ (ii) $$2(-3)^2 + 1 = A(-3-2)(0) + B(0) + C(-3-2)^2$$ $$2(9) + 1 = 0 + 0 + C(-3 - 2)^{2}$$ $$18 + 1 = C(-5)^2$$ $$19 = C(25)$$ $$\frac{19}{25} = C$$ $$C = \frac{19}{25}$$ $$2x^{2} + 1 = A(x - 2)(x + 3) + B(x + 3) + C(x - 2)^{2}$$ $$2x^2 + 1 = A(x^2 + 3x - 2x - 6) + Bx + 3B + C(x^2 - 4x + 2)$$ $$2x^2 + 1 = A(x^2 + x - 6) + Bx + 3B + C(x^2 - 4x + 2)$$ $$2x^2 + 1 = Ax^2 + Ax - 6A + Bx + 3B + Cx^2 - 4Cx + 2C$$ $$2x^2 + 1 = Ax^2 + Cx^2 + Ax + Bx - 4Cx - 6A + 3B + 2C$$ $$2x^{2} + 1 = (A + C)x^{2} + (A + B - 4C)x + (-6A + 3B + 2C)$$ By comparing the coefficients of x^2 , we get $$A+C=2$$ Put $$C = \frac{19}{25}$$ $$A + \frac{19}{25} = 2$$ $$A = 2 - \frac{19}{25}$$ $$A = \frac{50 - 19}{25}$$ $$A = \frac{31}{25}$$ Put the values of A, B and C in equ (i) $$\frac{2x^2 + 1}{(x - 2)^2(x + 3)} = \frac{\frac{31}{25}}{x - 2} + \frac{\frac{9}{5}}{(x - 2)^2} + \frac{\frac{19}{25}}{x + 3}$$ $$\frac{2x^2 + 1}{(x - 2)^2(x + 3)} = \frac{31}{25(x - 2)} - \frac{9}{5(x - 2)^2} + \frac{19}{25(x + 3)}$$ ## Exercise # 4.1 ## Page # 78 Resolve the following fractions into partial fraction. $$(1) \quad \frac{3x-2}{2x^2-x}$$ #### Solution: $$\frac{3x-2}{2x^2-x}$$ $$\frac{3x-2}{2x^2-x}$$ $$\frac{3x-2}{2x^2-x} = \frac{3x-2}{x(2x-1)}$$ $$\frac{3x-2}{2x^2-x} = \frac{A}{x} + \frac{B}{2x-1}$$ equ(i) Multiply equ (i) by x(2x - 1) $$\frac{3x-2}{2x^2-x} \times x(2x-1) = \frac{A}{x} \times x(2x-1) + \frac{B}{2x-1} \times x(2x-1)$$ $$3x - 2 = A(2x - 1) + Bx$$ equ(ii) Put $$x = 0$$ in equ (ii) $$3(0) - 2 = A(2(0) - 1) + B(0)$$ $$0 - 2 = A(0 - 1) + 0$$ $$-2 = A(-1)$$ $$-2 = -A$$ $$2 = A$$ $$A = 2$$ Put $$2x - 1 = 0 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}$$ in equ (ii) $$3\left(\frac{1}{2}\right) - 2 = A(0) + B\left(\frac{1}{2}\right)$$ $$\frac{3}{2} - 2 = 0 + \frac{B}{2}$$ $$\frac{3-4}{2} = \frac{B}{2}$$ $$\begin{array}{ccc} 2 & -2 \\ -1 & B \end{array}$$ $$-1 = B$$ $$B = -1$$ Put the values of A and B in equ (i) $$\frac{3x-2}{2x^2-x} = \frac{2}{x} + \frac{-1}{2x-1}$$ $$2x^2 - x$$ $x + 2x - 1$ $3x - 2$ 2 1 $$\frac{3x-2}{2x^2-x} = \frac{2}{x} - \frac{1}{2x-1}$$ # (2) $\frac{x-1}{x^2+6x+5}$ #### **Solution:** $$\frac{x-1}{x^2+6x+5}$$ $$\frac{x-1}{x^2+6x+5} = \frac{x-1}{(x+1)(x+5)}$$ Let $$\frac{x-1}{(x+1)(x+5)} = \frac{A}{x+1} + \frac{B}{x+5}$$ equ(i) Multiply equ (i) by (x + 1)(x + 5) $$\frac{x-1}{(x+1)(x+5)} \times (x+1)(x+5) = \frac{A}{x+1} \times (x+1)(x+5) + \frac{B}{x+5} \times (x+1)(x+5)$$ $$x - 1 = A(x + 5) + B(x + 1)$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$-1 - 1 = A(-1 + 5) + B(0)$$ $$-2 = A(4) + 0$$ $$-2 = 4A$$ $$\frac{-2}{4} = A$$ $$\frac{1}{2} = A$$ R.W $x^{2} + 6x + 5 = x^{2} + 1x + 5x + 5$ $x^{2} + 6x + 5 = x(x+1) + 5(x+1)$ $x^2 + 6x + 5 = (x + 1)(x + 5)$ $$A = \frac{-1}{2}$$ Put $x + 5 = 0 \Rightarrow x = -5$ in equ (ii) $$-5 - 1 = A(0) + B(-5 + 1)$$ $$-6 = 0 + B(-4)$$ $$-6 = -4B$$ $$6 = 4B$$ $$\frac{6}{4} = B$$ $$\frac{3}{2} = B$$ $$\frac{3}{2} = B$$ $$B = \frac{3}{2}$$ Put the values of A and B in equ (i) $$\frac{x-1}{(x+1)(x+5)} = \frac{\frac{-1}{2}}{x+1} + \frac{\frac{3}{2}}{x+5}$$ $$\frac{x-1}{(x+1)(x+5)} = \frac{-1}{2(x+1)} + \frac{3}{2(x+5)}$$ $$\frac{x-1}{x^2+6x+5} = \frac{-1}{2(x+1)} + \frac{3}{2(x+5)}$$ #### **Solution:** $$\frac{1}{x^2 - 1}$$ $$\frac{1}{x^2 - 1} = \frac{1}{x^2 - 1^2}$$ $$\frac{1}{x^2 - 1} = \frac{1}{(x+1)(x-1)}$$ Now Let $$\frac{1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$$ equ(i) Multiply equ (i) by (x + 1)(x - 1), we get $$1 = A(x - 1) + B(x + 1)$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$1 = A(-1 - 1) + B(0)$$ $$1 = A(-2) + 0$$ $$1 = -2A$$ $$\frac{1}{-2} = A$$ $$A = \frac{1}{-2}$$ $$A = -\frac{1}{2}$$ Put $x - 1 = 0 \Rightarrow x = 1$ in equ (ii) $$1 = A(0) + B(1+1)$$ $$1 = 0 + B(2)$$ $$1 = 2B$$ $$\frac{1}{2} = E$$ $$B = \frac{1}{2}$$ Put the values of A and B in equ (i) $$\frac{1}{(x+1)(x-1)} = \frac{-\frac{1}{2}}{x+1} + \frac{\frac{1}{2}}{x-1}$$ $$\frac{1}{(x+1)(x-1)} = \frac{-1}{2(x+1)} + \frac{1}{2(x-1)}$$ $$\frac{1}{x^2 - 1} = \frac{-1}{2(x+1)} + \frac{1}{2(x-1)}$$ $$(4) \quad \frac{x}{x^2 + 4x - 5}$$ #### Solution: $$x^2 + 4x - 5$$ $$\frac{x}{x^2 + 4x - 5} = \frac{x}{(x - 1)(x + 5)}$$ Lei $$\frac{x}{(x-1)(x+5)} = \frac{A}{x-1} + \frac{B}{x+5}$$equ(i) Multiply equ (i) by (x-1)(x+5) $$\frac{x}{(x-1)(x+5)} \times (x-1)(x+5) = \frac{A}{x-1} \times (x-1)(x+5) + \frac{B}{x+5} \times (x-1)(x+5)$$ $$x = A(x + 5) + B(x - 1)$$ equ(ii) Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$1 = A(1+5) + B(0)$$ $$1 = A(6) + 0$$ $$1 = 6A$$ $$\frac{1}{6} = A$$ $$A = \frac{1}{6}$$ Put $$x + 5 = 0 \Rightarrow x = -5$$ in equ (ii) $$-5 = A(0) + B(-5 - 1)$$ $$-5 = 0 + B(-6)$$ $$-5 = -6B$$ $$5 = 6B$$ $x^{2} + 4x - 5 = x^{2} - 1x + 5x - 5$ $x^{2} + 4x - 5 = x(x - 1) + 5(x - 1)$ $x^{2} + 4x - 5 = (x - 1)(x + 5)$ $$\frac{5}{6} = B$$ $$B = \frac{5}{6}$$ Put the values of A and B in equ (i) $$\frac{x}{(x-1)(x+5)} = \frac{\frac{1}{6}}{x+1} + \frac{\frac{5}{6}}{x+5}$$ $$\frac{x}{(x-1)(x+5)} = \frac{1}{6(x-1)} + \frac{5}{6(x+5)}$$ OR $$x \qquad 1 \qquad 5$$ $$\frac{x}{x^2 + 4x - 5} = \frac{1}{6(x - 1)} + \frac{5}{6(x + 5)}$$ (5) $$\frac{4x+2}{(x+2)(2x-1)}$$ **Solution:** $$\frac{4x+2}{(x+2)(2x-1)}$$ Let $$\frac{4x+2}{(x+2)(2x-1)} = \frac{A}{x+2} + \frac{B}{2x-1} \dots equ(i)$$ Multiply equ (i) by (x + 2)(2x - 1) $$\frac{4x+2}{(x+2)(2x-1)} \times (x+2)(2x-1) = \frac{A}{x+2} \times (x+2)(2x-1) + \frac{B}{2x-1} \times (x+2)(2x-1)$$ $$4x + 2 = A(2x - 1) + B(x + 2)$$ equ(ii) Put $x + 2 = 0 \Rightarrow x = -2$ in equ (ii) $$4(-2) + 2 = A(2(-2) - 1) + B(0)$$ $$-8 + 2 = A(-4 - 1) + 0$$ $$-6 = A(-5)$$ $$-6 = -5A$$ $$6 = 5A$$ $$\frac{6}{5} = A$$ $$A = \frac{6}{5}$$ Put $$2x - 1 = 0 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}$$ in equ (ii) $$4\left(\frac{1}{2}\right) + 2 = A(0) + B\left(\frac{1}{2} + 2\right)$$ $$2 + 2 = 0 + B\left(\frac{1+4}{2}\right)$$ $$4 = B\left(\frac{5}{2}\right)$$ $$4 \times \frac{2}{5} = B$$ $$\frac{8}{5} = B$$ Put the values of A and B in equ (i) $$\frac{4x+2}{(x+2)(2x-1)} = \frac{\frac{6}{5}}{x+2} + \frac{\frac{8}{5}}{2x-1}$$ $$\frac{4x+2}{(x+2)(2x-1)} = \frac{6}{5(x+2)} + \frac{8}{5(2x-1)}$$ (7) $$\frac{x^2 + 5x + 3}{(x^2 - 1)(x + 1)}$$ #### **Solution:** $$\frac{x^2 + 5x + 3}{(x^2 - 1)(x + 1)} = \frac{x^2 + 5x + 3}{(x - 1)(x + 1)(x + 1)}$$ $$\frac{x^2 +
5x + 3}{(x^2 - 1)(x + 1)} = \frac{x^2 + 5x + 3}{(x - 1)(x + 1)^2}$$ Now Let $$\frac{x^2 + 5x + 3}{(x - 1)(x + 1)^2} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} \dots equ(i)$$ Multiply equ (i) by $(x-1)(x+1)^2$ $$\frac{x^2 + 5x + 3}{(x - 1)(x + 1)^2} \times (x - 1)(x + 1)^2 = \frac{A}{x - 1} \times (x - 1)(x + 1)^2 + \frac{B}{x + 1} \times (x - 1)(x + 1)^2 + \frac{C}{(x + 1)^2} \times (x - 1)(x + 1)^2$$ $$x^{2} + 5x + 3 = A(x+1)^{2} + B(x-1)(x+1) + C(x-1)$$ equ(ii) Put $x - 1 = 0 \Rightarrow x = 1$ in equ (ii) $$(1)^2 + 5(1) + 3 = A(1+1)^2 + B(0)(x+1) + C(0)$$ $$1 + 5 + 3 = A(2)^2 + 0 + 0$$ $$9 = A(4)$$ $$9 = 4A$$ $$\frac{9}{4} = A$$ $$A = \frac{9}{4}$$ Put $x + 1 = 0 \Rightarrow x = -1$ in equ (ii) $$(-1)^2 + 5(-1) + 3 = A(0)^2 + B(x-1)(0) + C(-1-1)$$ $$1 - 5 + 3 = A(0) + B(0) + C(-2)$$ $$-4 + 3 = 0 + 0 - 2C$$ $$-1 = -2C$$ $$1 = 2C$$ $$\frac{1}{2} = C$$ $$C = \frac{1}{2}$$ equ (ii) ⇒ $$x^{2} + 5x + 3 = A(x^{2} + 2x + 1) + B(x^{2} - 1) + Cx - C$$ $$x^{2} + 5x + 3 = Ax^{2} + 2Ax + A + Bx^{2} - B + Cx - C$$ $$x^{2} + 5x + 3 = Ax^{2} + Bx^{2} + 2Ax + Cx + A - B - C$$ $$x^{2} + 5x + 3 = (A + B)x^{2} + (2A + C)x + (A - B - C)$$ By comparing the coefficients of x^2 , we get $$A + B = 1$$ Put $$A = \frac{9}{4}$$ $$\frac{9}{4} + B = 1$$ $$B = 1 - \frac{9}{4}$$ $$B = \frac{4 - 9}{4}$$ $$B = \frac{-5}{4}$$ Put the values of A, B and C in equ (i) $$\frac{x^2 + 5x + 3}{(x - 1)(x + 1)^2} = \frac{\frac{9}{4}}{x - 1} + \frac{\frac{-5}{4}}{x + 1} + \frac{\frac{1}{2}}{(x + 1)^2}$$ $$x^2 + 5x + 3$$ $$9$$ $$5$$ $$1$$ $$\frac{x+3x+3}{(x-1)(x+1)^2} = \frac{9}{4(x-1)} - \frac{3}{4(x+1)} + \frac{1}{2(x+1)^2}$$ **Solution:** $$\frac{x^2 + 2}{(x+2)(x^2 + 5x + 6)} = \frac{x^2 + 2}{(x+2)(x+3)(x+2)}$$ $$\frac{x^2 + 2}{(x+2)(x^2 + 5x + 6)} = \frac{x^2 + 2}{(x+3)(x+2)^2}$$ $$\frac{x^2 + 2}{(x+2)(x^2 + 5x + 6)} = \frac{A}{x+3} + \frac{B}{x+2} + \frac{C}{(x+2)^2} \dots equ(i)$$ Multiply equ (i) by $(x + 3)(x + 2)^2$ $$\frac{x^2 + 2}{(x+2)(x^2 + 5x + 6)} \times (x+3)(x+2)^2 = \frac{A}{x+3} \times (x+3)(x+2)^2 + \frac{B}{x+2} \times (x+3)(x+2)^2 + \frac{C}{(x+2)^2} \times (x+3)(x+2)^2$$ $$x^2 + 2 = A(x+2)^2 + B(x+3)(x+2) + C(x+3)$$equ(ii) Put $$x + 3 = 0 \Rightarrow x = -3$$ in equ (ii) $$(-3)^2 + 2 = A(-3+2)^2 + B(0)(x+2) + C(0)$$ $$9 + 2 = A(-1)^2 + 0 + 0$$ $$11=A(1)$$ $x^2 + 5x + 6 = x^2 + 2x + 3x + 6$ $x^2 + 5x + 6 = x(x + 2) + 3(x + 2)$ $$11 = A$$ $$A = 11$$ Put $$x + 2 = 0 \Rightarrow x = -2$$ in equ (ii) $$(-2)^2 + 2 = A(0)^2 + B(x+3)(0) + C(-2+3)$$ $$4 + 2 = 0 + 0 + C(1)$$ $$6 = C$$ $$C = 6$$ #### equ (ii) ⇒ $$x^{2} + 2 = A(x + 2)^{2} + B(x + 3)(x + 2) + C(x + 3)$$ $$x^{2} + 2 = A(x^{2} + 2x + 1) + B(x + 3)(x + 2) + C(x + 3)$$ $$x^{2} + 5x + 3 = A(x^{2} + 2x + 1) + B(x^{2} - 1) + Cx - C$$ $$x^2 + 5x + 3 = Ax^2 + 2Ax + A + Bx^2 - B + Cx - C$$ $$x^{2} + 5x + 3 = Ax^{2} + Bx^{2} + 2Ax + Cx + A - B - C$$ $$x^{2} + 5x + 3 = (A + B)x^{2} + (2A + C)x + (A - B - C)$$ By comparing the coefficients of x^2 , we get $$A + B = 1$$ Put $$A = \frac{9}{4}$$ $$\frac{9}{4} + B = 1$$ $$B=1-\frac{9}{4}$$ $$B = \frac{4-9}{4}$$ $$B = \frac{-5}{4}$$ Put the values of A, B and C in equ (i) $$\frac{x^2 + 5x + 3}{(x - 1)(x + 1)^2} = \frac{\frac{9}{4}}{x - 1} + \frac{\frac{-5}{4}}{x + 1} + \frac{\frac{1}{2}}{(x + 1)^2}$$ $$\frac{(x-1)(x+1)^2}{x^2+5x+3} = \frac{9}{(x+1)^2} - \frac{5}{(x+1)^2} + \frac{1}{2(x+1)^2}$$ $$\frac{x^2 + 5x + 3}{(x - 1)(x + 1)^2} = \frac{9}{4(x - 1)} - \frac{5}{4(x + 1)} + \frac{1}{2(x + 1)^2}$$ OR $$\frac{x^2+2}{(x+2)(x^2+5x+6)} = \frac{9}{4(x-1)} - \frac{5}{4(x+1)} + \frac{1}{2(x+1)^2}$$ $$(8) \ \frac{2x-1}{x(x-3)^2}$$ #### **Solution:** $$\frac{2x-1}{x(5x-3)^2}$$ Let $$\frac{2x-1}{x(x-3)^2} = \frac{A}{x} + \frac{B}{x-3} + \frac{C}{(x-3)^2} \quad \dots \quad \text{equ(i)}$$ https://web.facebook.com/TehkalsDotCom Multiply equ (i) by $x(x-3)^2$ $$\frac{2x-1}{x(x-3)^2} \times x(x-3)^2 = \frac{A}{x} \times x(x-3)^2 + \frac{B}{x-3} \times x(x-3)^2 + \frac{C}{(x-3)^2} \times x(x-3)^2$$ $$2x - 1 = A(x - 3)^2 + Bx(x - 3) + Cx$$equ(ii) Put x = 0 in equ (ii) $$2(0) - 1 = A(0 - 3)^{2} + B(0)(0 - 3) + C(0)$$ $$0-1=A(-3)^2+0+0$$ $$-1 = A(9)$$ $$\frac{-1}{9} = A$$ $$A = \frac{-1}{9}$$ Put $$x - 3 = 0 \Rightarrow x = 3$$ in equ (ii) $$2(3) - 1 = A(0)^2 + B(3)(0) + C(3)$$ $$6 - 1 = 0 + 0 + 3C$$ $$5 = 3C$$ $$\frac{5}{2} = 0$$ $$C=\frac{5}{3}$$ # equ (ii) ⇒ $$2x - 1 = A(x - 3)^2 + Bx(x - 3) + Cx$$ $$2x - 1 = A(x^2 - 6x + 9) + Bx^2 - 3Bx + Cx$$ $$2x - 1 = Ax^2 - 6Ax + 9A + Bx^2 - 3Bx + Cx$$ $$2x - 1 = Ax^2 + Bx^2 - 6Ax - 3Bx + Cx + 9A$$ $$2x - 1 = (A + B)x^{2} + (-6A - 3B + C)x + 9A$$ By comparing the coefficients of x^2 , we get $$A + B = 0$$ Put $$A = \frac{-1}{9}$$ $$\frac{-1}{9} + B = 0$$ $$B=\frac{1}{9}$$ Put the values of A, B and C in equ (i) $$\frac{2x-1}{x(x-3)^2} = \frac{\frac{-1}{9}}{x} + \frac{\frac{1}{9}}{x-3} + \frac{\frac{5}{3}}{(x-3)^2}$$ $$\frac{2x-1}{x(x-3)^2} = \frac{-1}{9x} + \frac{1}{9(x-3)} + \frac{5}{3(x-3)^2}$$ $$(9) \ \frac{x^2}{x^2 + 2x + 1}$$ #### **Solution:** $$\frac{x^2}{x^2 + 2x + 1}$$ As $$\frac{x^2}{x^2 + 2x + 1}$$ is improper So $$x^{2} + 2x + 1 \overline{\smash)x^{2}}$$ $$\underline{\pm x^{2} \pm 2x \pm 1}$$ $$-2x - 1$$ $$\frac{x^2}{x^2 + 2x + 1} = 1 + \frac{-2x - 1}{(x)^2 + 2(x)(1) + (1)^2}$$ $$\frac{x^2}{x^2 + 2x + 1} = 1 + \frac{-2x - 1}{(x + 1)^2} \dots \text{equ}(\mathbf{A})$$ Now Let $$\frac{-2x-1}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2} \dots equ(i)$$ Multiply equ (i) by $(x + 3)(x + 2)^2$ $$\frac{-2x-1}{(x+1)^2} \times (x+1)^2 = \frac{A}{x+1} \times (x+1)^2 + \frac{B}{(x+1)^2} \times (x+1)^2$$ $$-2x - 1 = A(x + 1) + B$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$-2(-1) - 1 = A(0) + B$$ $$2 - 1 = 0 + B$$ $$1 = B$$ equ (ii) ⇒ $$-2x - 1 = A(x + 1) + B$$ $$-2x - 1 = Ax + A + B$$ $$-2x - 1 = Ax + (A + B)$$ By comparing the coefficients of x, we get $$A = -2$$ Put the values of A and B in equ (i) $$\frac{-2x-1}{(x+1)^2} = \frac{-2}{x+1} + \frac{1}{(x+1)^2}$$ Put the above in equ (A) $$\frac{x^2}{x^2 + 2x + 1} = 1 + \frac{-2}{x + 1} + \frac{1}{(x + 1)^2}$$ $$\frac{x^2}{x^2 + 2x + 1} = 1 - \frac{2}{x + 1} + \frac{1}{(x + 1)^2}$$ $$(10) \ \frac{x^2}{(x-1)^2(x+1)}$$ **Solution:** $$\frac{x^2}{(x-1)^2(x+1)}$$ Let $$\frac{x^2}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1} \dots equ(i)$$ Multiply equ (i) by $(x-1)^2(x+1)$ https://web.facebook.com/TehkalsDotCom $$\frac{x^2}{(x-1)^2(x+1)} \times (x-1)^2(x+1) = \frac{A}{x-1} \times (x-1)^2(x+1) + \frac{B}{(x-1)^2} \times (x-1)^2(x+1) + \frac{C}{x+1} \times (x-1)^2(x+1)$$ $$x^2 = A(x-1)(x+1) + B(x+1) + C(x-1)^2$$equ(ii) Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$(1)^2 = A(0)(1+1) + B(1+1) + C(0)^2$$ $$1 = 0 + B(2) + 0$$ $$1 = 2B$$ $$\frac{1}{2} = B$$ $$B = \frac{1}{2}$$ Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$(-1)^2 = A(-1-1)(0) + B(0) + C(-1-1)^2$$ $$1 = 0 + 0 + C(-2)^2$$ $$1 = C(4)$$ $$\frac{1}{4} = 0$$ $$C = \frac{1}{4}$$ $$x^{2} = A(x-1)(x+1) + B(x+1) + C(x-1)^{2}$$ $$x^2 = A(x^2 - 1) + Bx + B + C(x^2 - 2x + 1)$$ $$x^2 = Ax^2 - A + Bx + B + Cx^2 - 2Cx + C$$ $$x^2 = Ax^2 + Cx^2 + Bx - 2Cx - A + B + C$$ $$x^2 = (A + C)x^2 + (B - 2C)x + (-A + B + C)$$ By comparing the coefficients of x^2 , we get $$A + C = 1$$ Put $$C = \frac{1}{4}$$ $$A + \frac{1}{4} = 1$$ $$A = 1 - \frac{1}{4}$$ $$A = \frac{4-1}{4}$$ $$A = \frac{3}{4}$$ Put the values of A, B and C in equ (i) $$= \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$ $$\frac{x-1}{(x-1)^2} \frac{(x-1)^2}{x+1} = \frac{\frac{3}{4}}{x-1} + \frac{\frac{1}{2}}{(x-1)^2} + \frac{\frac{1}{4}}{x+1}$$ $$\frac{x^2}{(x-1)^2(x+1)} = \frac{3}{4(x-1)} + \frac{1}{2(x-1)^2} + \frac{1}{4(x+1)}$$ # Tehkals.com Learn & Teach # Example # 5: Find partial fraction of $\frac{1}{(x+1)(x^2+2)}$ #### **Solution:** $$\frac{1}{(x+1)(x^2+2)}$$ Let $$\frac{1}{(x+1)(x^2+2)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $(x - 1)(x^2 + 3)$ $$\frac{1}{(x+1)(x^2+2)} \times (x+1)(x^2+2) = \frac{A}{x+1} \times (x+1)(x^2+2) + \frac{Bx+C}{x^2+2} \times (x+1)(x^2+2)$$ $$1 = A(x^2 + 2) + (Bx + C)(x + 1)$$equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$1 = A((-1)^2 + 2) + (B(-1) + C)(0)$$ $$1 = A(1+2) + 0$$ $$1 = A(3)$$ $$1 = 3A$$ $$\frac{1}{3} = A$$ $$A = \frac{1}{3}$$ # equ (ii) ⇒ $$1 = A(x^2 + 2) + (Bx + C)(x + 1)$$ $$1 = Ax^2 + 2A + Bx^2 + Bx + Cx + C$$ $$1 = Ax^2 + Bx^2 + Bx + Cx + 2A + C$$ $$1 = (A+B)x^2 + (B+C)x + (2A+C)$$ Compare the coefficients of x^2 and constant we Compare the coefficients of x^2 , x and constant we get $$A + B = 0$$ equ(\boldsymbol{a}) $$B + C = 0 \dots equ(\boldsymbol{b})$$ $$2A + C = 1 \dots equ(c)$$ Put $$A = \frac{1}{3}$$ in equ (a) $$\frac{1}{3} + B = 0$$ $$B = -\frac{1}{3}$$ Put $$B = -\frac{1}{3}$$ in equ (**b**) $$-\frac{1}{3} + C = 0$$ $$C = \frac{1}{3}$$ Put the values of A, B and C in equ (i) $$\frac{1}{(x+1)(x^2+2)} = \frac{\frac{1}{3}}{x+1} + \frac{-\frac{1}{3}x + \frac{1}{3}}{x^2+2}$$ $x^4 - x^2 - 6 = x^4 - 3x^2 + 2x^2 - 6$ $x^4 - x^2 - 6 = x^2(x^2 - 3) + 2(x^2 - 3)$ $x^4 - x^2 - 6 = (x^2 - 3)(x^2 + 2)$ #### Exercise #4.2 $$\frac{1}{(x+1)(x^2+2)} = \frac{\frac{1}{3}}{x+1} + \frac{\frac{-1x+1}{3}}{x^2+2}$$ $$\frac{1}{(x+1)(x^2+2)} = \frac{1}{3(x+1)} + \frac{\frac{-1x+1}{3(x^2+2)}}{3(x^2+2)}$$ $$\frac{1}{(x+1)(x^2+2)} = \frac{1}{3(x+1)} + \frac{\frac{-(x-1)}{3(x^2+2)}}{3(x^2+2)}$$ $$\frac{1}{(x+1)(x^2+2)} = \frac{1}{3(x+1)} - \frac{x-1}{3(x^2+2)}$$ # Example 6: Find partial fraction of $\frac{4x^2 - 28}{x^4 - x^2 - 6}$ #### **Solution:** $$\frac{4x^2 - 28}{x^4 - x^2 - 6}$$ $$\frac{4x^2 - 28}{x^4 - x^2 - 6} = \frac{4x^2 - 28}{(x^2 - 3)(x^2 + 2)}$$ Let $$\frac{4x^2 - 28}{(x^2 - 3)(x^2 + 2)} = \frac{Ax + B}{x^2 - 3} + \frac{Cx + D}{x^2 + 2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $(x^2 - 3)(x^2 + 2)$ $$\frac{4x^2 - 28}{(x^2 - 3)(x^2 + 2)} \times (x^2 - 3)(x^2 + 2) = \frac{Ax + B}{x^2 - 3} \times (x^2 - 3)(x^2 + 2) + \frac{Cx + D}{x^2 + 2} \times (x^2 - 3)(x^2 + 2)$$ $$4x^2 - 28 = (Ax + B)(x^2 + 2) + (Cx + D)(x^2 - 3) \quad \dots \quad
\text{equ(ii)}$$ equ (ii) ⇒ $$4x^2 - 28 = Ax^3 + 2Ax + Bx^2 + 2B + Cx^3 - 3Cx + Dx^2 - 3D$$ $$4x^2 - 28 = Ax^3 + Cx^3 + Bx^2 + Dx^2 + 2Ax - 3Cx + 2B - 3D$$ $$4x^2 - 28 = (A+C)x^3 + (B+D)x^2 + (2A-3C)x + (2B-3D)$$ Compare the coefficients of x^3 , x^2 , x and constant we get $$A + C = 0$$ equ(\boldsymbol{a}) $$B + D = 4 \dots equ(b)$$ $$2A - 3C = 0 \dots equ(c)$$ $$2B - 3D = -28 \dots equ(d)$$ From $equ(\mathbf{a})$ $$A = -C$$equ(\boldsymbol{e}) Put $$\mathbf{A} = -\mathbf{C}$$ in equ (\mathbf{c}) $$2(-C) - 3C = 0$$ $$-2C - 3C = 0$$ $$-5C = 0$$ $$C = \frac{0}{-5}$$ $$C = 0$$ Put C = 0 in equ (e) $$A = -(0)$$ $$A = 0$$ From $equ(\mathbf{b})$ $$B = 4 - D \dots equ(f)$$ Put $$B = 4 - D$$ in equ (\boldsymbol{d}) $$2(4-D)-3D=-28$$ $$8 - 2D - 3D = -28$$ $$-5D = -28 - 8$$ $$-5D = -36$$ $$5D = 36$$ $$D = \frac{36}{5}$$ Put $$D = \frac{36}{5}$$ in equ (f) $$B = 4 - \frac{36}{5}$$ $$B = \frac{20 - 36}{5}$$ $$B = \frac{-16}{5}$$ Put the values of A, B, C and D in equ (i) $$\frac{4x^2 - 28}{(x^2 - 3)(x^2 + 2)} = \frac{(0)x + \left(\frac{-16}{5}\right)}{x^2 - 3} + \frac{(0)x + \frac{36}{5}}{x^2 + 2}$$ $$\frac{4x^2 - 28}{(x^2 - 3)(x^2 + 2)} = \frac{\frac{-16}{5}}{x^2 - 3} + \frac{\frac{36}{5}}{x^2 + 2}$$ $$4x^2 - 28 \qquad -16 \qquad 36$$ $$\frac{4x^2 - 28}{(x^2 - 3)(x^2 + 2)} = \frac{-16}{5(x^2 - 3)} + \frac{36}{5(x^2 + 2)}$$ Example 7: Find partial fraction of $\frac{1}{(x-1)(x^2+1)^2}$ **Solution:** $$\frac{1}{(x-1)(x^2+1)^2}$$ Let $$\frac{1}{(x-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2} \dots equ(i)$$ Multiply equ (i) by $(x - 1)(x^2 + 1)^2$ $$\frac{1}{(x-1)(x^2+1)^2} \times (x-1)(x^2+1)^2 = \frac{A}{x-1} \times (x-1)(x^2+1)^2 + \frac{Bx+C}{x^2+1} \times (x-1)(x^2+1)^2 + \frac{Dx+E}{(x^2+1)^2} \times (x-1)(x^2+1)^2$$ $$1 = A(x^2 + 1)^2 + (Bx + C)(x - 1)(x^2 + 1) + (Dx + E)(x - 1) \dots equ(ii)$$ Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$1 = A((1)^2 + 1)^2 + (Bx + C)(0)(x^2 + 1) + (Dx + E)(0)$$ $$1 = A(1+1)^2 + 0 + 0$$ $$1 = A(2)^2$$ $$1 = A(4)$$ $$\frac{1}{4} = A$$ $$A = \frac{1}{4}$$ #### equ (ii) ⇒ $$1 = A(x^2 + 1)^2 + (Bx + C)(x - 1)(x^2 + 1) + (Dx + E)(x - 1)$$ $$1 = A(x^4 + 2x^2 + 1) + (Bx + C)(x^3 + x - x^2 - 1) + Dx^2 - Dx + Ex - E$$ $$1 = Ax^4 + 2Ax^2 + A + Bx^4 + Bx^2 - Bx^3 - Bx + Cx^3 + Cx - Cx^2 - C + Dx^2 - Dx + Ex - E$$ $$1 = Ax^4 + Bx^4 - Bx^3 + Cx^3 + 2Ax^2 + Bx^2 - Cx^2 + Dx^2 - Bx + Cx - Dx + Ex + A - C - E$$ $$1 = (A + B)x^{4} + (-B + C)x^{3} + (2A + B - C + D)x^{2} + (-B + C - D + E)x + (A - C - E)$$ Compare the coefficients of x^4 , x^3 , x^2 , x and constant we get $$A + B = 0 \dots \operatorname{equ}(\boldsymbol{a})$$ $$-B + C = 0 \dots equ(\boldsymbol{b})$$ $$2A + B - C + D = 0$$ equ(c) $$-B + C - D + E = 0 \dots equ(d)$$ $$A - C - E = 1 \dots equ(\mathbf{e})$$ Put $$A = \frac{1}{4}$$ in equ (a) $$\frac{1}{4} + B = 0$$ $$B = -\frac{1}{4}$$ Put $B = -\frac{1}{4}$ in equ (**b**) $$-\left(-\frac{1}{4}\right) + C = 0$$ $$\frac{1}{4} + C = 0$$ $$C = -\frac{1}{4}$$ Put the values of A, B and C in equ (c) $$2\left(\frac{1}{4}\right) + \left(-\frac{1}{4}\right) - \left(-\frac{1}{4}\right) + D = 0$$ $$\frac{2}{4} - \frac{1}{4} + \frac{1}{4} + D = 0$$ $$\frac{1}{2} + D = 0$$ $$D = -\frac{1}{2}$$ Put the values of A and C in equ (e) $$A-C-E=1$$ $$\frac{1}{4} - \left(-\frac{1}{4}\right) - E = 1$$ $$\frac{1}{4} + \frac{1}{4} - E = 1$$ $$\frac{1+1}{4} = 1 + E$$ $$\frac{2}{4} - 1 = E$$ $$\frac{1}{2} - 1 = E$$ $$\frac{1 - 2}{2} = E$$ $$\frac{-1}{2} = E$$ $$E = \frac{-1}{2}$$ Put the values of A, B, C, D and E in equ (i) $$\frac{1}{(x-1)(x^2+1)^2} = \frac{\frac{1}{4}}{x-1} + \frac{-\frac{1}{4}x + \left(-\frac{1}{4}\right)}{x^2+1} + \frac{-\frac{1}{2}x + \left(-\frac{1}{2}\right)}{(x^2+1)^2}$$ $$\frac{1}{(x-1)(x^2+1)^2} = \frac{1}{4(x-1)} + \frac{\frac{-x-1}{4}}{x^2+1} + \frac{\frac{-x-1}{2}}{(x^2+1)^2}$$ $$\frac{1}{(x-1)(x^2+1)^2} = \frac{1}{4(x-1)} + \frac{-(x+1)}{4(x^2+1)} + \frac{-(x+1)}{2(x^2+1)^2}$$ $$\frac{1}{(x-1)(x^2+1)^2} = \frac{1}{4(x-1)} - \frac{x+1}{4(x^2+1)} - \frac{x+1}{2(x^2+1)^2}$$ Exercise # 4.2 Page # 82 Resolve the following fractions into partial fraction. (1) $$\frac{1}{x(x^2+1)}$$ #### **Solution:** Let $$\frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} \quad \dots \cdot \text{equ(i)}$$ Multiply equ (i) by $x(x^2 + 1)$ $$\frac{1}{x(x^2+1)} \times x(x^2+1) = \frac{A}{x} \times x(x^2+1) + \frac{Bx+C}{x^2+1} \times x(x^2+1)$$ $$1 = A(x^2 + 1) + (Bx + C)x$$ equ(ii) Put x = 0 in equ (ii) $$1 = A((0)^2 + 1) + (B(0) + C)(0)$$ $$1 = A(0+1) + 0$$ $$1 = A(1)$$ $$1 = A$$ $$A = 1$$ $$1 = A(x^2 + 1) + (Bx + C)x$$ $$1 = Ax^2 + A + Bx^2 + Cx$$ $$1 = Ax^2 + Bx^2 + Cx + A$$ $$1 = (A+B)x^2 + Cx + A$$ By comparing the coefficients of x^2 , x and constant we get $$A + B = 0 \dots \operatorname{equ}(\boldsymbol{a})$$ $$C = 0 \dots equ(\boldsymbol{b})$$ $$A = 1 \dots equ(c)$$ Put $$A = 1$$ in equ (a) $$1 + B = 0$$ $$B = -1$$ Put the values of A, B and C in equ (i) $$\frac{1}{x(x^2+1)} = \frac{1}{x} + \frac{-1x+0}{x^2+1}$$ $$\frac{1}{x(x^2+1)} = \frac{1}{x} + \frac{-x}{x^2+1}$$ $$\frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}$$ (2) $$\frac{x^2+3x+1}{(x-1)(x^2+3)}$$ #### **Solution:** $$x^2 + 3x + 1$$ $$(x-1)(x^2+3)$$ Let $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 3} \dots equ(i)$$ Multiply equ (i) by $(x-1)(x^2+3)$ $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} \times (x - 1)(x^2 + 3) = \frac{A}{x - 1} \times (x - 1)(x^2 + 3) + \frac{Bx + C}{x^2 + 3} \times (x - 1)(x^2 + 3)$$ $$x^2 + 3x + 1 = A(x^2 + 3) + (Bx + C)(x - 1)$$ equ(ii) Put $x - 1 = 0 \Rightarrow x = 1$ in equ (ii) $$(1)^2 + 3(1) + 1 = A((1)^2 + 3) + (B(1) + C)(0)$$ $$1+3+1=A(1+3)+0$$ $$5 = A(4)$$ $$5 = 4A$$ $$\frac{5}{-}=4$$ $$A = \frac{5}{4}$$ #### equ (ii) ⇒ $$x^{2} + 3x + 1 = A(x^{2} + 3) + (Bx + C)(x - 1)$$ $$x^{2} + 3x + 1 = Ax^{2} + 3A + Bx^{2} - Bx + Cx - C$$ $$x^{2} + 3x + 1 = Ax^{2} + Bx^{2} - Bx + Cx + 3A - C$$ $$x^{2} + 3x + 1 = (A + B)x^{2} + (-B + C)x + (3A - C)$$ Compare the coefficients of x^2 , x and constant we get $$A + B = 1 \dots \text{equ}(\mathbf{a})$$ $$-B + C = 3 \dots equ(b)$$ $$3A - C = 1 \dots equ(c)$$ Put $$A = \frac{5}{4}$$ in equ (a) $$\frac{5}{4} + B = 1$$ $$B = 1 - \frac{5}{4}$$ $$B = \frac{4-5}{4}$$ $$B = \frac{-1}{4}$$ Put $$B = \frac{-1}{4}$$ in equ (**b**) $$-\left(\frac{-1}{4}\right) + C = 3$$ $$\frac{1}{4} + C = 3$$ $$C = 3 + \frac{-1}{4}$$ $$C = 3 - \frac{1}{4}$$ $$C = \frac{12-1}{4}$$ $$C = \frac{11}{4}$$ Put the values of A, B and C in equ (i) $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} = \frac{\frac{5}{4}}{x - 1} + \frac{\frac{-1}{4}x + \frac{11}{4}}{x^2 + 3}$$ $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} = \frac{\frac{5}{4}}{x - 1} + \frac{\frac{-1x + 11}{4}}{x^2 + 3}$$ $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} = \frac{5}{4(x - 1)} + \frac{-1x + 11}{4(x^2 + 3)}$$ $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} = \frac{5}{4(x - 1)} + \frac{-(1x - 11)}{4(x^2 + 3)}$$ $$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)} = \frac{5}{4(x - 1)} - \frac{x - 11}{4(x^2 + 3)}$$ $$(3) \ \frac{2x+1}{(x^2+1)(x-1)}$$ #### **Solution:** $$\frac{2x+1}{(x^2+1)(x-1)}$$ Let $$\frac{2x+1}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1} \dots equ(i)$$ Multiply equ (i) by $(x^2 + 1)(x - 1)$ & Teach $$\frac{2x+1}{(x^2+1)(x-1)} \times (x^2+1)(x-1) = \frac{Ax+B}{x^2+1} \times (x^2+1)(x-1) + \frac{C}{x-1} \times (x^2+1)(x-1)$$ $$2x + 1 = (Ax + B)(x - 1) + C(x^2 + 1)$$ equ(ii) Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$2x + 1 = (Ax + B)(x - 1) + C(x^{2} + 1)$$ $$2(1) + 1 = (A(1) + B)(0) + C((1)^{2} + 1)$$ $$2 + 1 = 0 + C(1 + 1)$$ $$3 = C(2)$$ $$3 = 2C$$ $$\frac{3}{2} = C$$ $$C = \frac{3}{2}$$ $$2x + 1 = (Ax + B)(x - 1) + C(x^{2} + 1)$$ $$2x + 1 = Ax^2 - Ax + Bx - B + Cx^2 + C$$ $$2x + 1 = Ax^2 + Cx^2 - Ax + Bx - B + C$$ $$2x + 1 = (A + C)x^{2} + (-A + B)x + (-B + C)$$ Compare the coefficients of x^2 , x and constant we get $$A + C = 0 \dots equ(a)$$ $$-A + B = 2 \dots equ(\mathbf{b})$$ $$-B + C = 1 \dots equ(c)$$ Put $$C = \frac{3}{2}$$ in equ (a) $$A + \frac{3}{2} = 0$$ $$A = -\frac{3}{2}$$ Put $A = -\frac{3}{2}$ in equ (**b**) $$-\left(-\frac{3}{2}\right) + B = 2$$ $$\frac{3}{2} + B = 2$$ $$B = 2 - \frac{3}{2}$$ $$B = \frac{4-3}{2}$$ $$B = \frac{1}{2}$$ Put the values of A, B and C in equ (i) $$\frac{2x+1}{(x^2+1)(x-1)} = \frac{\frac{-3}{2}x + \frac{1}{2}}{x^2+1} + \frac{\frac{3}{2}}{x-1}$$ $$\frac{2x+1}{(x^2+1)(x-1)} = \frac{x^2+1}{\frac{-3x+1}{2}} + \frac{\frac{3}{2}}{x-1}$$ $$\frac{2x+1}{(x^2+1)(x-1)} = \frac{-3x+1}{2(x^2+1)} + \frac{3}{2(x-1)}$$ $$\frac{2x+1}{(x^2+1)(x-1)} = \frac{-(3x-1)}{2(x^2+1)} + \frac{3}{2(x-1)}$$ $$\frac{2x+1}{(x^2+1)(x-1)} = -\frac{3x-1}{2(x^2+1)} + \frac{3}{2(x-1)}$$ $$(4) \ \frac{-3}{x^2(x^2+5)}$$ #### **Solution:** $$\frac{-3}{x^2(x^2+5)}$$ Let $$\frac{-3}{x^2(x^2+5)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+5} \quad \dots \cdot \text{equ(i)}$$ Multiply equ (i) by $x^2(x^2 + 5)$ $$\frac{-3}{x^2(x^2+5)} \times x^2(x^2+5) = \frac{A}{x} \times x^2(x^2+5) + \frac{B}{x^2} \times x^2(x^2+5) + \frac{Cx+D}{x^2+5} \times x^2(x^2+5)$$ $$-3 = Ax(x^2 + 5) + B(x^2 + 5) + (Cx + D)x^2$$ equ(ii) Put x = 0 in equ (ii) $$-3 = A(0)(x^2 + 5) + B((0)^2 + 5) + (Cx + D)(0)^2$$ $$-3 = A(0) + B(0 + 5) + (Cx + D)(0)$$ $$-3 = 0 + B(5) + 0$$ $$-3 = 5B$$ $$\frac{-3}{5} = E$$ $$B = \frac{-3}{5}$$ equ (ii) ⇒ $$-3 = Ax(x^2 + 5) + B(x^2 + 5) + (Cx + D)x^2$$ $$-3 = Ax^3 + 5Ax + Bx^2 + 5B + Cx^3 + Dx^2$$ $$-3 = Ax^3 + Cx^3 + Bx^2 + Dx^2 + 5Ax + 5B$$ $$-3 = (A + C)x^3 + (B + D)x^2 + 5Ax + 5B$$ By comparing the coefficients of x^3, x^2, x and constant we get $$A + C = 0$$ equ(a) $$B + D = 0$$equ(b) $$5A = 0 \dots equ(c)$$ $$5B = -3 \dots equ(d)$$ From equ(c) $$A = \frac{0}{5}$$ $$A = 0$$ $$Put A = 0 in equ (a)$$ $$0 + C = 0$$ $$C = 0$$ $$Put B = \frac{-3}{5} in equ (b)$$ $$\frac{-3}{5} + D = 0$$ $$D = \frac{3}{5}$$ Put the values of A, B, C and D in equ (i) $$\frac{-3}{x^2(x^2+5)} = \frac{0}{x} + \frac{\frac{-3}{5}}{x^2} + \frac{0x + \frac{3}{5}}{x^2+5}$$ $$\frac{-3}{x^2(x^2+5)} =
0 + \frac{-3}{5x^2} + \frac{3}{5(x^2+5)}$$ $$\frac{-3}{x^2(x^2+5)} = \frac{-3}{5x^2} + \frac{3}{5(x^2+5)}$$ $$(5) \ \frac{3x-2}{(x+4)(3x^2+1)}$$ #### **Solution:** $$3x - 2$$ $$(x+4)(3x^2+1)$$ Let $$\frac{3x-2}{(x+4)(3x^2+1)} = \frac{A}{x+4} + \frac{Bx+C}{3x^2+1} \dots equ(i)$$ Multiply equ (i) by $(x + 4)(3x^2 + 1)$ $$\frac{3x-2}{(x+4)(3x^2+1)} \times (x+4)(3x^2+1) = \frac{A}{x+4} \times (x+4)(3x^2+1) + \frac{Bx+C}{3x^2+1} \times (x+4)(3x^2+1)$$ $$3x - 2 = A(3x^2 + 1) + (Bx + C)(x + 4)$$ equ(ii) Put $x + 4 = 0 \Rightarrow x = -4$ in equ (ii) $$3(-4) - 2 = A(3(-4)^2 + 1) + (B(-4) + C)(0)$$ $$-12 - 2 = A(3(16) + 1) + 0$$ $$-14 = A(48 + 1)$$ $$-14 = A(49)$$ $$\frac{-14}{49} = A$$ $$\frac{-2}{7} = A$$ $$A = \frac{-2}{7}$$ #### equ (ii) ⇒ $$3x - 2 = A(3x^2 + 1) + (Bx + C)(x + 4)$$ $$3x - 2 = 3Ax^2 + A + Bx^2 + 4Bx + Cx + 4C$$ $$3x - 2 = 3Ax^2 + Bx^2 + 4Bx + Cx + A + 4C$$ $$3x - 2 = (3A + B)x^2 + (4B + C)x + (A + 4C)$$ Compare the coefficients of x^2 , x and constant we get $$3A + B = 0 \dots \operatorname{equ}(\boldsymbol{a})$$ $$4B + C = 3 \dots equ(b)$$ $$A + 4C = -2 \dots equ(c)$$ https://web.facebook.com/TehkalsDotCom Put $$A = \frac{-2}{7}$$ in equ (a) $$3\left(\frac{-2}{7}\right) + B = 0$$ $$\frac{-6}{7} + B = 0$$ $$B = \frac{6}{7}$$ Put $B = \frac{6}{7}$ in equ (b) $$4\left(\frac{6}{7}\right) + C = 3$$ $$\frac{24}{7} + C = 3$$ $$C = 3 - \frac{24}{7}$$ $$C = \frac{21 - 24}{7}$$ $$C = \frac{-3}{7}$$ Put the values of A, B and C in equ (i) $$\frac{3x - 2}{(x + 4)(3x^2 + 1)} = \frac{\frac{-2}{7}}{x + 4} + \frac{\frac{6}{7}x + \frac{-3}{7}}{3x^2 + 1}$$ $$\frac{3x - 2}{(x + 4)(3x^2 + 1)} = \frac{\frac{-2}{7}}{x + 4} + \frac{\frac{6x - 3}{7}}{3x^2 + 1}$$ $$\frac{3x - 2}{(x + 4)(3x^2 + 1)} = \frac{-2}{7(x + 4)} + \frac{6x - 3}{7(3x^2 + 1)}$$ (6) $$\frac{5x}{(x+1)(x^2-2)^2}$$ #### **Solution:** $$\frac{5x}{(x+1)(x^2-2)^2}$$ Let $$\frac{5x}{(x+1)(x^2-2)^2} = \frac{A}{x+1} + \frac{Bx+C}{x^2-2} + \frac{Dx+E}{(x^2-2)^2} \dots equ(i)$$ Multiply equ (i) by $(x + 1)(x^2 - 2)^2$ $$\frac{5x}{(x+1)(x^2-2)^2} \times (x+1)(x^2-2)^2 = \frac{A}{x+1} \times (x+1)(x^2-2)^2 + \frac{Bx+C}{x^2-2} \times (x+1)(x^2-2)^2 + \frac{Dx+E}{(x^2-2)^2} \times (x+1)(x^2-2)^2$$ $$5x = A(x^2 - 2)^2 + (Bx + C)(x + 1)(x^2 - 2) + (Dx + E)(x + 1)$$equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$5(-1) = A((-1)^2 - 2)^2 + (B(-1) + C)(0)(x^2 - 2) + (Dx + E)(0)$$ $$-5 = A(1-2)^2 + 0 + 0$$ $$-5 = A(-1)^2$$ https://web.facebook.com/TehkalsDotCom https://tehkals.com/ $$-5 = A(1)$$ $$-5 = A$$ $$A = -5$$ #### equ (ii) ⇒ $$5x = A(x^2 - 2)^2 + (Bx + C)(x + 1)(x^2 - 2) + (Dx + E)(x + 1)$$ $$5x = A(x^4 - 4x^2 + 4) + (Bx + C)(x^3 - 2x + x^2 - 2) + Dx^2 + Dx + Ex + E$$ $$5x = Ax^4 - 4Ax^2 + 4A + Bx^4 - 2Bx^2 + Bx^3 - 2Bx + Cx^3 - 2Cx + Cx^2 - 2C + Dx^2 + Dx + Ex + E$$ $$5x = Ax^4 + Bx^4 + Bx^3 + Cx^3 - 4Ax^2 - 2Bx^2 + Cx^2 + Dx^2 - 2Bx - 2Cx + Dx + Ex + 4A - 2C + E$$ $$5x = (A + B)x^4 + (B + C)x^3 + (-4A - 2B + C + D)x^2 + (-2B - 2C + D + E)x + (4A - 2C + E)$$ Compare the coefficients of x^4 , x^3 , x^2 , x and constant we get $$A + B = 0 \quad \dots \cdot \operatorname{equ}(\boldsymbol{a})$$ $$B + C = 0 \dots equ(\boldsymbol{b})$$ $$-4A - 2B + C + D = 0$$equ(c) $$-2B - 2C + D + E = 5 \dots equ(d)$$ $$4A - 2C + E = 0 \dots equ(e)$$ Put $$A = -5$$ in equ (\boldsymbol{a}) $$-5 + B = 0$$ $$B=5$$ Put $$B = 5$$ in equ (\boldsymbol{b}) $$5 + C = 0$$ $$C = -5$$ Put the values of A, B and C in equ (c) $$-4(-5) - 2(5) + (-5) + D = 0$$ $$20 - 10 - 5 + D = 0$$ $$10 - 5 + D = 0$$ $$5 + D = 0$$ $$D = -5$$ Put the values of A and C in equ (e) $$4(-5) - 2(-5) + E = 0$$ $$-20 + 10 + E = 0$$ $$-10 + E = 0$$ $$E = 10$$ Put the values of A, B, C, D and E in equ (i) $$\frac{5x}{(x+1)(x^2-2)^2} = \frac{-5}{x+1} + \frac{5x+(-5)}{x^2-2} + \frac{-5x+10}{(x^2-2)^2}$$ $$\frac{5x}{(x+1)(x^2-2)^2} = \frac{-5}{x+1} + \frac{5x-5}{x^2-2} + \frac{-5x+10}{(x^2-2)^2}$$ (7) $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)}$$ #### **Solution:** $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)}$$ arn & Teach $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x - 2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $(x^2 + 1)^2(x - 2)$ $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)} \times (x^2 + 1)^2(x - 2) = \frac{Ax + B}{x^2 + 1} \times (x^2 + 1)^2(x - 2) + \frac{Cx + D}{(x^2 + 1)^2} \times (x^2 + 1)^2(x - 2) + \frac{Cx + D}{$$ $$\frac{E}{x-2} \times (x^2+1)^2(x-2)$$ $$5x^2 - 4x + 8 = (Ax + B)(x^2 + 1)(x - 2) + (Cx + D)(x - 2) + E(x^2 + 1)^2$$equ(ii) Put $$x - 2 = 0 \Rightarrow x = 2$$ in equ (ii) $$5(2)^2 - 4(2) + 8 = (A(2) + B)(x^2 + 1)(0) + (C(2) + D)(0) + E((2)^2 + 1)^2$$ $$5(4) - 8 + 8 = 0 + 0 + E(4 + 1)^2$$ $$20 = E(5)^2$$ $$20 = E(25)$$ $$\frac{20}{25} = E$$ $$\frac{4}{5} = E$$ $$E=\frac{4}{5}$$ $$5x^2 - 4x + 8 = (Ax + B)(x^2 + 1)(x - 2) + (Cx + D)(x - 2) + E(x^2 + 1)^2$$ $$5x^2 - 4x + 8 = (Ax + B)(x^3 - 2x^2 + x - 2) + Cx^2 - 2Cx + Dx - 2D + E(x^4 + 2x^2 + 1)$$ $$5x^{2} - 4x + 8 = Ax^{4} - 2Ax^{3} + Ax^{2} - 2Ax + Bx^{3} - 2Bx^{2} + Bx - 2B + Cx^{2} - 2Cx + Dx - 2D + Ex^{4} + 2Ex^{2} + Ex^{2} Ex$$ $$5x^{2} - 4x + 8 = Ax^{4} + Ex^{4} - 2Ax^{3} + Bx^{3} + Ax^{2} - 2Bx^{2} + Cx^{2} + 2Ex^{2} - 2Ax + Bx - 2Cx + Dx - 2B - 2D + E$$ $$5x^2 - 4x + 8 = (A + E)x^4 + (-2A + B)x^3 + (A - 2B + C + 2E)x^2 + (-2A + B - 2C + D)x + (-2B - 2D + E)$$ Compare the coefficients of x^4 , x^3 , x^2 , x and constant we get $$A + E = 0 \quad \dots \quad \text{equ}(\boldsymbol{a})$$ $$-2A + B = 0 \quad \dots \cdot \text{equ}(\boldsymbol{b})$$ $$A - 2B + C + 2E = 5$$ equ(c) $$-2A + B - 2C + D = -4$$ equ(**d**) $$-2B - 2D + E = 8 \dots equ(e)$$ Put $$E = \frac{4}{5}$$ in equ (a) $$A + \frac{4}{5} = 0$$ $$A = -\frac{4}{5}$$ Put $$A = -\frac{4}{5}$$ in equ (**b**) $$-2\left(-\frac{4}{5}\right) + B = 0$$ $$\frac{8}{5} + B = 0$$ $$B = -\frac{8}{5}$$ Put the values of A, B and C in equ (c) $$-\frac{4}{5} - 2\left(-\frac{8}{5}\right) + C + 2\left(\frac{4}{5}\right) = 5$$ $$-\frac{4}{5} + \frac{16}{5} + C + \frac{8}{5} = 5$$ $$-\frac{4}{5} + \frac{16}{5} + \frac{8}{5} + C = 5$$ $$-\frac{4 + 16 + 8}{5} + C = 5$$ $$-\frac{4 + 16 + 8}{5} + C = 5$$ $$\frac{20}{5} + C = 5$$ $$4 + C = 5$$ $$C = 5 - 4$$ Put the values of A, B and E in equ (d) $$-2\left(-\frac{4}{5}\right) + \left(-\frac{8}{5}\right) - 2(1) + D = -4$$ $$\frac{8}{5} - \frac{8}{5} - 2 + D = -4$$ $$-2 + D = -4$$ $$D = -4 + 2$$ $$D = -2$$ C = 1 Put the values of A, B, C, D and E in equ (i) $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)} = \frac{-\frac{4}{5}x + \frac{-8}{5}}{x^2 + 1} + \frac{1x + (-2)}{(x^2 + 1)^2} + \frac{\frac{4}{5}}{x - 2}$$ $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)} = \frac{-\frac{4x - 8}{5}}{x^2 + 1} + \frac{x - 2}{(x^2 + 1)^2} + \frac{\frac{4}{5}}{x - 2}$$ $$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)} = \frac{-4x - 8}{5(x^2 + 1)} + \frac{x - 2}{(x^2 + 1)^2} + \frac{4}{5(x - 2)}$$ #### **Important** $$(8) \ \frac{4x-5}{(x^2+4)^2}$$ #### **Solution:** $$\frac{4x-5}{(x^2+4)^2}$$ Let $$\frac{4x-5}{(x^2+4)^2} = \frac{Ax+B}{x^2+4} + \frac{Cx+D}{(x^2+4)^2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $(x^2 + 4)^2$ $$\frac{4x-5}{(x^2+4)^2} \times (x^2+4)^2 = \frac{Ax+B}{x^2+4} \times (x^2+4)^2 + \frac{Cx+D}{(x^2+4)^2} \times (x^2+4)^2$$ $$4x - 5 = (Ax + B)(x^2 + 4) + Cx + D$$ equ(ii) $$4x - 5 = Ax^3 + 4Ax + Bx^2 + 4B + Cx + D$$ $$4x - 5 = Ax^3 + Bx^2 + 4Ax + Cx + 4B + D$$ $$4x - 5 = Ax^3 + Bx^2 + (4A + C)x + (4B + D)$$ Compare the coefficients of x^3 , x^2 , x and constant we get $$A = 0 \dots \operatorname{equ}(\boldsymbol{a})$$ $$B = 0 \dots equ(\boldsymbol{b})$$ $$4A + C = 4 \dots equ(c)$$ $$4B + D = -5 \dots equ(d)$$ Put $$A = 0$$ in equ (c) $$4(0) + C = 4$$ $$C = 4$$ Put $$B = 0$$ in equ (\boldsymbol{d}) $$4(0)
+ D = -5$$ $$D = -5$$ Put the values of A, B, C and D in equ (i) $$\frac{4x-5}{(x^2+4)^2} = \frac{(0)x+0}{x^2+4} + \frac{4x+(-5)}{(x^2+4)^2}$$ $$(x^2+4)^2$$ x^2+4 $(x^2+4)^2$ $$\frac{4x-5}{(x^2+4)^2} = 0 + \frac{4x-5}{(x^2+4)^2}$$ $$\frac{4x-5}{(x^2+4)^2} = \frac{4x-5}{(x^2+4)^2}$$ $$\frac{1}{(x^2+4)^2} = \frac{1}{(x^2+4)^2}$$ # (9) $\frac{1}{(x^2+1)(1-x^4)}$ $$\frac{8x^2}{(x^2+1)(1-x^4)} = \frac{8x^2}{(x^2+1)(1+x^2)(1-x^2)}$$ $$\frac{8x^2}{(x^2+1)(1-x^4)} = \frac{8x^2}{(x^2+1)^2(1+x)(1-x)}$$ $$\frac{8x^2}{(x^2+1)(1-x^4)} = \frac{8x^2}{(x^2+1)^2(1+x)(1-x)}$$ Let **Solution:** $$\frac{8x^2}{(x^2+1)^2(1+x)(1-x)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{1+x} + \frac{F}{1-x} \dots \text{equ(i)}$$ Multiply equ (i) by $(x^2 + 1)^2(1 + x)(1 - x)$ $$\frac{8x^2}{(x^2+1)^2(1+x)(1-x)} \times (x^2+1)^2(1+x)(1-x) = \frac{Ax+B}{x^2+1} \times (x^2+1)^2(1+x)(1-x) + \frac{Cx+D}{(x^2+1)^2} \times (x^2+1)^2(1+x)(1-x) + \frac{E}{1+x} \times (x^2+1)^2(1+x)(1-x) + \frac{F}{1-x} \times (x^2+1)^2(1+x)(1-x)$$ $$8x^2 = (Ax + B)(x^2 + 1)(1 + x)(1 - x) + (Cx + D)(1 + x)(1 - x) + E(x^2 + 1)^2(1 - x) + F(x^2 + 1)^2(1 + x)$$ Put $1 + x = 0 \Rightarrow x = -1$ in above equation $$8(-1)^2 = (Ax + B)(x^2 + 1)(0)(1 - x) + (Cx + D)(0)(1 - x) + E((-1)^2 + 1)^2(1 - (-1)) + F(x^2 + 1)^2(0)$$ ``` 8(1) = 0 + 0 + E(1+1)^2(1+1) + 0 8 = E(2)^2(2) 8 = E(4)(2) 8 = E(8) \frac{1}{8} = E 1 = E E=1 Put 1 - x = 0 \Rightarrow -x = -1 \Rightarrow x = 1 in equ (ii) 8(1)^2 = (Ax + B)(x^2 + 1)(1 + x)(0) + (Cx + D)(1 + x)(0) + E(x^2 + 1)^2(0) + F((1)^2 + 1)^2(1 + 1) 8(1) = 0 + 0 + 0 + F(1+1)^2(1+1) 8 = F(2)^2(2) 8 = F(4)(2) 8 = F(8) 1 = F F = 1 equ (ii) ⇒ 8x^2 = (Ax + B)(x^2 + 1)(1 + x)(1 - x) + (Cx + D)(1 + x)(1 - x) + E(x^2 + 1)^2(1 - x) + F(x^2 + 1)^2(1 + x) 8x^2 = (Ax + B)(x^2 + 1)(1 - x^2) + (Cx + D)(1 - x^2) + E(x^4 + 2x^2 + 1)(1 - x) + F(x^4 + 2x^2 + 1)(1 + x) 8x^{2} = (Ax + B)(1 - x^{4}) + Cx - Cx^{3} + D - Dx^{2} + E(x^{4} - x^{5} + 2x^{2} - 2x^{3} + 1 - x) + F(x^{4} + x^{5} + 2x^{2} + 2x^{3} + 1 + x) 8x^{2} = Ax - Ax^{5} + B - Bx^{4} + Cx - Cx^{3} + D - Dx^{2} + Ex^{4} - Ex^{5} + 2Ex^{2} - 2Ex^{3} + E - Ex + Fx^{4} + Fx^{5} + 2Fx^{2} + 2Fx^{3} + F + Fx 8x^{2} = (-A - E + F)x^{5} + (-B + E + F)x^{4} + (-C - 2E + 2F)x^{3} + (-D + 2E + 2F)x^{2} + (A + C - E + F)x + (B + D + E + F)x^{2} Compare the coefficients of x^5, x^4, x^3, x^2, x and constant we get -A - E + F = 0 \dots \operatorname{equ}(\boldsymbol{a}) -B + E + F = 0 equ(b) -C - 2E + 2F = 0 \dots equ(c) -D + 2E + 2F = 8 \dots equ(d) A + C - E + F = 0 \dots equ(\mathbf{e}) B + D + E + F = 0 \dots equ(f) Put the values of E and F in equ (a) -A - 1 + 1 = 0 -A = 0 A = 0 Put the values of E and F in equ (\boldsymbol{b}) -B + 1 + 1 = 0 -B + 2 = 0 -B = -2 B=2 Put the values of E and F in equ (c) -C - 2(1) + 2(1) = 0 -C - 2 + 2 = 0 -C = 0 C = 0 ``` Put the values of E and F in equ (d) $$-D + 2(1) + 2(1) = 8$$ $$-D + 2 + 2 = 8$$ $$-D + 4 = 8$$ $$-D = 8 - 4$$ $$-D = 4$$ $$D = -4$$ Put the values of A, B, C, D, E and F in equ (i) $$\frac{8x^2}{(x^2+1)^2(1+x)(1-x)} = \frac{0x+2}{x^2+1} + \frac{0x+(-4)}{(x^2+1)^2} + \frac{1}{1+x} + \frac{1}{1-x}$$ $$\frac{8x^2}{(x^2+1)^2(1+x)(1-x)} = \frac{2}{x^2+1} + \frac{-4}{(x^2+1)^2} + \frac{1}{1+x} + \frac{1}{1-x}$$ $$\frac{8x^2}{(x^2+1)^2(1+x)(1-x)} = \frac{2}{x^2+1} - \frac{4}{(x^2+1)^2} + \frac{1}{1+x} + \frac{1}{1-x}$$ $$(10) \ \frac{2x^2+4}{(x^2+1)^2(x-1)}$$ #### Solution: $$2x^2 + 4$$ $$(x^2+1)^2(x-1)$$ Let $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{x-1} \dots equ(i)$$ Multiply equ (i) by $(x^2 + 1)^2(x - 1)$ Multiply equ (1) by $$(x^2 + 1)^2(x - 1)$$ $$\frac{2x^2 + 4}{(x^2 + 1)^2(x - 1)} \times (x^2 + 1)^2(x - 1) = \frac{Ax + B}{x^2 + 1} \times (x^2 + 1)^2(x - 1) + \frac{Cx + D}{(x^2 + 1)^2} \times (x^2 + 1)^2(x - 1) + \frac{E}{x - 1} \times (x^2 + 1)^2(x - 1)$$ $$2x^2 + 4 = (Ax + B)(x^2 + 1)(x - 1) + (Cx + D)(x - 1) + E(x^2 + 1)^2$$equ(ii) Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$2(1)^2 + 4 = (A(1) + B)(x^2 + 1)(0) + (C(1) + D)(0) + E((1)^2 + 1)^2$$ $$2(1) + 4 = 0 + 0 + E(1+1)^2$$ $$2 + 4 = E(2)^2$$ $$6 = E(4)$$ $$\frac{6}{4} = E$$ $$\frac{3}{2} = E$$ $$\frac{3}{2} = E$$ $$E = \frac{3}{2}$$ $$2x^2 + 4 = (Ax + B)(x^2 + 1)(x - 1) + (Cx + D)(x - 1) + E(x^2 + 1)^2$$ $$2x^{2} + 4 = (Ax + B)(x^{3} - x^{2} + x - 1) + Cx^{2} - Cx + Dx - D + E(x^{4} + 2x^{2} + 1)$$ $$2x^2 + 4 = Ax^4 - Ax^3 + Ax^2 - Ax + Bx^3 - Bx^2 + Bx - B + Cx^2 - Cx + Dx - D + Ex^4 + 2Ex^2 + E$$ $$2x^{2} + 4 = Ax^{4} + Ex^{4} - Ax^{3} + Bx^{3} + Ax^{2} - Bx^{2} + Cx^{2} + 2Ex^{2} - Ax + Bx - Cx + Dx - B - D + E$$ $$2x^{2} + 4 = (A + E)x^{4} + (-A + B)x^{3} + (A - B + C + 2E)x^{2} + (-A + B - C + D)x + (-B - D + E)$$ Compare the coefficients of x^4 , x^3 , x^2 , x and constant we get $$A + E = 0 \dots \operatorname{equ}(\boldsymbol{a})$$ $$-A + B = 0 \dots equ(\boldsymbol{b})$$ $$A - B + C + 2E = 2 \dots equ(c)$$ $$-A + B - C + D = 0$$equ(\boldsymbol{d}) $$-B - D + E = 8 \dots equ(\mathbf{e})$$ Put $$E = \frac{3}{2}$$ in equ (\boldsymbol{a}) $$A + \frac{3}{2} = 0$$ $$A = -\frac{3}{2}$$ Put $$A = -\frac{3}{2}$$ in equ (**b**) $$-\left(-\frac{3}{2}\right) + B = 0$$ $$\frac{3}{2} + B = 0$$ $$B = -\frac{3}{2}$$ Put the values of A, B and E in equ (c) $$-\frac{3}{2} - \left(-\frac{3}{2}\right) + C + 2\left(\frac{3}{2}\right) = 2$$ $$-\frac{3}{2} + \frac{3}{2} + C + 3 = 2$$ $$0 + C = 2 - 3$$ $$C = -1$$ Put the values of A, B and C in equ (d) $$-A + B - C + D = 0$$ $$-\left(-\frac{3}{2}\right) + \left(-\frac{3}{2}\right) - (-1) + D = 0$$ $$\frac{3}{2} - \frac{3}{2} + 1 + D = 0$$ $$0 + 1 + D = 0$$ $$1+D=0$$ $$D = -1$$ Put the values of A, B , C , D and E in equ (i) $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{x-1}$$ $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = \frac{-\frac{3}{2}x+\left(-\frac{3}{2}\right)}{x^2+1} + \frac{-1x+(-1)}{(x^2+1)^2} + \frac{\frac{3}{2}}{x-1}$$ $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = \frac{\frac{-3x-3}{2}}{x^2+1} + \frac{-x-1}{(x^2+1)^2} + \frac{\frac{3}{2}}{x-1}$$ $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = \frac{-3x-3}{2(x^2+1)} + \frac{-(x+1)}{(x^2+1)^2} + \frac{3}{2(x-1)}$$ $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = \frac{-(3x+3)}{2(x^2+1)} - \frac{x+1}{(x^2+1)^2} + \frac{3}{2(x-1)}$$ $$\frac{2x^2+4}{(x^2+1)^2(x-1)} = -\frac{3x+3}{2(x^2+1)} - \frac{x+1}{(x^2+1)^2} + \frac{3}{2(x-1)}$$ # Tehkals.com Learn & Teach Q2: Resolve the following fractions into partial fraction. $$(1) \ \frac{2x^2}{(x+1)(x-1)}$$ **Solution**: $$\frac{2x^2}{(x+1)(x-1)}$$ As $$\frac{2x^2}{(x+1)(x-1)}$$ is improper $$\frac{2x^2}{(x+1)(x-1)} = \frac{2x^2}{x^2 - 1}$$ $$\begin{array}{r} 2 \\ x^2 - 1 \overline{\smash)2x^2 \\ \pm 2x^2 \mp 2 \\ 2 \end{array}$$ $$\frac{2x^2}{x^2 - 1} = 2 + \frac{2}{x^2 - 1}$$ $$\frac{2x^2}{x^2 - 1} = 2 + \frac{2}{(x+1)(x-1)} \dots \text{equ}(\mathbf{A})$$ Now Let $$\frac{2}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1} \quad \dots \cdot \text{equ(i)}$$ Multiply equ (i) by $$(x + 1)(x - 1)$$ $$\frac{2}{(x + 1)(x - 1)} \times (x + 1)(x - 1) = \frac{A}{x + 1} \times (x + 1)(x - 1) + \frac{B}{x - 1} \times (x + 1)(x - 1)$$ $$2 = A(x - 1) + B(x + 1)$$ equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$2 = A(-1 - 1) + B(0)$$ $$2 = A(-2) + 0$$ $$2 = -2A$$ $$\frac{2}{-2} = A$$ $$-\overline{1} = A$$ $$A = -1$$ Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$2 = A(0) + B(1+1)$$ $$2 = 0 + B(2)$$ $$2 = 2B$$ $$\frac{2}{2} = B$$ $$\overline{1} = B$$ $$B = 1$$ Put the values of A and B in equ (i) $$\frac{2}{(x+1)(x-1)} = \frac{-1}{x+1} + \frac{1}{x-1}$$ Put the above in equ (A) $$\frac{2x^2}{(x+1)(x-1)} = 2 + \frac{-1}{x+1} + \frac{1}{x-1}$$ $$\frac{2x^2}{(x+1)(x-1)} = 2 - \frac{1}{x+1} + \frac{1}{x-1}$$ $$(2) \ \frac{2x^3 - 3x^2 + 9x + 8}{x^2 - 3x + 2}$$ #### Solution: $$\frac{2x^3 - 3x^2 + 9x + 8}{x^2 - 3x + 2}$$ As $$\frac{2x^3 - 3x^2 + 9x + 8}{x^2 - 3x + 2}$$ is improper So $$\frac{2x^3 - 3x^2 + 9x + 8}{x^2 - 3x + 2} = 2x + 3 + \frac{14x + 2}{x^2 - 3x + 2}$$ $$\frac{2x^3 - 3x^2 + 9x + 8}{x^2 - 3x + 2} = 2x + 3 + \frac{14x + 2}{(x - 2)(x - 1)} \dots \cdot \text{equ}(\mathbf{A})$$ $$R.W$$ $$x^{2} - 3x + 2 = x^{2} - 2x - 1x + 2$$ $$x^{2} - 3x + 2 = x(x - 2) - 1(x - 2)$$ $$x^{2} - 3x + 2 = (x - 2)(x - 2)$$ Now Let $$\frac{14x+2}{(x-2)(x-1)} = \frac{A}{x-2} + \frac{B}{x-1} \dots equ(i)$$ Multiply equ (i) by (x-2)(x-1) $$\frac{14x+2}{(x-2)(x-1)} \times (x-2)(x-1) = \frac{A}{x-2} \times (x-2)(x-1) + \frac{B}{x-1} \times (x-2)(x-1)$$ $$14x + 2 = A(x - 1) + B(x - 2)$$ equ(ii) Put $$x - 2 = 0 \Rightarrow x = 2$$ in equ (ii) $$14(2) + 2 = A(2-1) + B(0)$$ $$28 + 2 = A(1) + 0$$ $$30 = A$$ $$A = 30$$ Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$14(1) + 2 = A(0) + B(1-2)$$ $$14 + 2 = 0 + B(-1)$$ $$16 = -B$$ $$-16 = B$$ $$B = -16$$ Put the values of A and B in equ (i) $$\frac{14x+2}{(x-2)(x-1)} = \frac{30}{x-2} + \frac{-16}{x-1}$$ $$\frac{14x+2}{(x-2)(x-1)} = \frac{30}{x-2} - \frac{16}{x-1}$$ Put the above in equ (A) $$\frac{2x^3 - 3x^2 + 9x + 8}{x^2 - 3x + 2} = 2x + 3 + \frac{30}{x - 2} - \frac{16}{x - 1}$$ $$(3) \ \frac{3x-1}{x^3-2x^2+x}$$ #### **Solution:** $$\frac{3x-1}{x^3-2x^2+x}$$ $$x^3 - 2x^2 + x$$ $$\frac{3x - 2x^2 + x}{3x - 1} = \frac{3x - 1}{x(x^2 - 2x + 1)}$$ $$\frac{3x-1}{x^3-2x^2+x} = \frac{3x-1}{x(x-1)^2}$$ $$\frac{x^3 - 2x^2 + x}{x^3 - 2x^2 + x} = \frac{x(x - 1)^2}{x^3 - 2x^2 + x}$$ $$\frac{3x-1}{x(x-1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $x(x-1)^2$ Multiply equ (i) by $$x(x-1)^2$$ $$\frac{3x-1}{x(x-1)^2} \times x(x-1)^2 = \frac{A}{x} \times x(x-1)^2 + \frac{B}{x-1} \times x(x-1)^2 + \frac{C}{(x-1)^2} \times x(x-1)^2$$ $$3x - 1 = A(x - 1)^2 + Bx(x - 1) + Cx$$ equ(ii) Put x = 0 in equ (ii) $$3(0) - 1 = A(0 - 1)^2 + B(0)(0 - 1) + C(0)$$ $$0 - 1 = A(-1)^2 + 0 + 0$$ $$-1 = A(1)$$ $$-1 = A$$ $$A = -1$$ Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$3(1) - 1 = A(0)^2 + B(1)(0) + C(1)$$ $$3 - 1 = 0 + 0 + C$$ $$2 = C$$ $$C = 2$$ $$3x - 1 = A(x - 1)^2 + Bx(x - 1) + Cx$$ $$3x - 1 = A(x^2 - 2x +
1) + Bx^2 - Bx + Cx$$ $$3x - 1 = Ax^2 - 2Ax + A + Bx^2 - Bx + Cx$$ $$3x - 1 = Ax^2 + Bx^2 - 2Ax - Bx + Cx + A$$ $$3x - 1 = (A + B)x^{2} + (-2A - B + C)x + A$$ By comparing the coefficients of x^2 , we get $$A+B=0$$ Put $$A = -1$$ $$-1 + B = 0$$ $$B=1$$ Put the values of A, B and C in equ (i) $$\frac{3x-1}{x(x-1)^2} = \frac{-1}{x} + \frac{1}{x-1} + \frac{2}{(x-1)^2}$$ #### **Important** (4) $$\frac{x+1}{(x-1)^2}$$ #### **Solution:** $$\frac{x+1}{(x-1)^2}$$ Let $$\frac{x+1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $$(x-1)^2$$ $$\frac{x+1}{(x-1)^2} \times (x-1)^2 = \frac{A}{x-1} \times (x-1)^2 + \frac{B}{(x-1)^2} \times (x-1)^2$$ $$x + 1 = A(x - 1) + B$$ equ(ii) Put $$x - 1 = 0 \Rightarrow x = 1$$ in equ (ii) $$1 + 1 = A(0) + B$$ $$2 = B$$ $$B=2$$ #### equ (ii) ⇒ $$x + 1 = A(x - 1) + B$$ $$x + 1 = Ax - A + B$$ $$x + 1 = Ax - A + B$$ $$x + 1 = Ax + (-A + B)$$ By comparing the coefficients of x, we get $$A = 1$$ Put the values of A and B in equ (i) $$\frac{x+1}{(x-1)^2} = \frac{1}{x-1} + \frac{2}{(x-1)^2}$$ (5) $$\frac{2x^2}{x^4-4}$$ #### **Solution:** $$\frac{2x^2}{x^4 - 4} = \frac{2x^2}{(x^2)^2 - (2)^2}$$ earn & Teach $$\frac{2x^2}{x^4 - 4} = \frac{2x^2}{(x^2 + 2)(x^2 - 2)}$$ Let $$\frac{2x^2}{(x^2+2)(x^2-2)} = \frac{Ax+B}{x^2+2} + \frac{Cx+D}{x^2-2} \quad \dots \cdot \text{equ(i)}$$ Multiply equ (i) by $(x^2 + 2)(x^2 - 2)$ $$\frac{2x^2}{(x^2+2)(x^2-2)} \times (x^2+2)(x^2-2) = \frac{Ax+B}{x^2+2} \times (x^2+2)(x^2-2) + \frac{Cx+D}{x^2-2} \times (x^2+2)(x^2-2)$$ $$2x^2 = (Ax + B)(x^2 - 2) + (Cx + D)(x^2 + 2)$$ equ(ii) equ (ii) ⇒ $$2x^2 = Ax^3 - 2Ax + Bx^2 - 2B + Cx^3 + 2Cx + Dx^2 + 2D$$ $$2x^2 = Ax^3 + Cx^3 + Bx^2 + Dx^2 - 2Ax + 2Cx - 2B + 2D$$ $$2x^2 = (A + C)x^3 + (B + D)x^2 + (-2A + 2C)x + (-2B + 2D)$$ Compare the coefficients of x^3 , x^2 , x and constant we get $$A + C = 0$$ equ(\boldsymbol{a}) $$B + D = 2 \dots equ(\boldsymbol{b})$$ $$-2A + 2C = 0$$equ(c) $$-2B + 2D = 0 \quad \dots \cdot \operatorname{equ}(\mathbf{d})$$ equ (c) \Rightarrow $$-2(A-C)=0$$ $$A-C=0$$ $$A = C \dots \operatorname{equ}(e)$$ Put $$A = C$$ in equ (a) $$C + C = 0$$ $$2C = 0$$ $$C = \frac{0}{2}$$ $$C = 0$$ Now Put C = 0 in equ (e) $$A = 0$$ equ (d) $$\Rightarrow$$ $$-2(B-D)=0$$ $$B - D = 0$$ $$B = D \dots \operatorname{equ}(\mathbf{f})$$ Put $$B = D$$ in equ (b) $$D + D = 2$$ $$2D = 2$$ $$D = \frac{2}{2}$$ $$D = 1$$ Now Put D = 1 in equ (f) $$B=1$$ Put the values of A, B, C and D in equ (i) $$\frac{2x^2}{(x^2+2)(x^2-2)} = \frac{0x+1}{x^2+2} + \frac{0x+1}{x^2-2}$$ $$\frac{2x^2}{(x^2+2)(x^2-2)} = \frac{1}{x^2+2} + \frac{1}{x^2-2}$$ $$(6) \ \frac{3x^2 + 3x + 2}{x^4 - 1}$$ #### **Solution:** $$\frac{3x^2 + 3x + 2}{x^4 - 1} = \frac{3x^2 + 3x + 2}{(x^2)^2 - (1)^2}$$ $$\frac{3x^2 + 3x + 2}{x^4 - 1} = \frac{3x^2 + 3x + 2}{(x^2 - 1)(x^2 + 1)}$$ $$\frac{3x^2 + 3x + 2}{x^4 - 1} = \frac{3x^2 + 3x + 2}{(x + 1)(x - 1)(x^2 + 1)}$$ $$\frac{3x^2 + 3x + 2}{(x+1)(x-1)(x^2+1)} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{Cx+D}{x^2+1} \dots \text{equ(i)}$$ Multiply equ (i) by $(x + 1)(x - 1)(x^2 + 1)$ $$\frac{3x^2 + 3x + 2}{(x+1)(x-1)(x^2+1)} \times (x+1)(x-1)(x^2+1) = \frac{A}{x+1} \times (x+1)(x-1)(x^2+1) + \frac{B}{x-1} \times (x+1)(x-1)(x^2+1) + \frac{Cx+D}{x^2+1} \times (x+1)(x-1)(x^2+1)$$ $$3x^2 + 3x + 2 = A(x-1)(x^2+1) + B(x+1)(x^2+1) + (Cx+D)(x+1)(x-1)$$equ(ii) Put $x + 1 = 0 \Rightarrow x = -1$ in equ (ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (1) $3(-1)^2 + 3(-1) + 2 = A(-1 - 1)((-1)^2 + 1) + B(0)(x^2 + 1) + (Cx + D)(0)(x - 1)$ $$3(1) - 3 + 2 = A(-2)(1+1) + 0 + 0$$ $$3 - 3 + 2 = A(-2)(2)$$ $$2 = -4A$$ $$\frac{2}{-4} = A$$ $$\frac{1}{-2} = A$$ $$-\frac{1}{2} = A$$ $$A = -\frac{1}{2}$$ Put $x - 1 = 0 \Rightarrow x = 1$ in equ (ii) $$3(1)^2 + 3(1) + 2 = A(0)(x^2 + 1) + B(1 + 1)((1)^2 + 1) + (Cx + D)(x + 1)(0)$$ $$3(1) + 3 + 2 = 0 + B(2)(1+1) + 0$$ $$3+3+2=B(2)(2)$$ $$8 = 4B$$ $$\frac{8}{4} = B$$ $$2 = B$$ $$B=2$$ equ (ii) ⇒ $$3x^2 + 3x + 2 = A(x-1)(x^2+1) + B(x+1)(x^2+1) + (Cx+D)(x+1)(x-1)$$ $$3x^2 + 3x + 2 = A(x^3 + x - x^2 - 1) + B(x^3 + x + x^2 + 1) + (Cx + D)(x^2 - 1)$$ $$3x^2 + 3x + 2 = Ax^3 + Ax - Ax^2 - A + Bx^3 + Bx + Bx^2 + B + Cx^3 - Cx + Dx^2 - D$$ $$3x^2 + 3x + 2 = Ax^3 + Bx^3 + Cx^3 - Ax^2 + Bx^2 + Dx^2 + Ax + Bx - Cx - A + B - D$$ $$3x^2 + 3x + 2 = (A + B + C)x^3 + (-A + B + D)x^2 + (A + B - C)x + (-A + B - D)$$ Compare the coefficients of x^3 , x^2 , x and constant we get $$A + B + C = 0$$ equ(\boldsymbol{a}) $$-A + B + D = 3 \dots \text{equ}(b)$$ $$A + B - C = 3 \dots equ(c)$$ $$-A + B - D$$ equ(\boldsymbol{d}) Put the values of \boldsymbol{A} and \boldsymbol{B} in equ (\boldsymbol{a}) $$-\frac{1}{2} + 2 + C = 0$$ $$\frac{-1+4}{2}+C=0$$ $$\frac{3}{2} + C = 0$$ $$C=-\frac{3}{2}$$ Put the values of **A** and **B** in equ (b) $$-\left(-\frac{1}{2}\right) + 2 + D = 3$$ $$\frac{1}{2} + 2 - 3 + D = 0$$ $$\frac{1+4-6}{2} + D = 0$$ $$\frac{1+4-6}{2} + D = 0$$ $$\frac{-1}{2} + D = 0$$ $$D = \frac{1}{2}$$ Put the values of A, B, C and D in equ (i) $$\frac{3x^2 + 3x + 2}{(x+1)(x-1)(x^2+1)} = \frac{-\frac{1}{2}}{x+1} + \frac{2}{x-1} + \frac{-\frac{3}{2}x + \frac{1}{2}}{x^2+1}$$ $$\frac{3x^2 + 3x + 2}{(x+1)(x-1)(x^2+1)} = \frac{-1}{2(x+1)} + \frac{2}{x-1} + \frac{\frac{-3x+1}{2}}{x^2+1}$$ $$\frac{3x^2 + 3x + 2}{(x+1)(x-1)(x^2+1)} = \frac{-1}{2(x+1)} + \frac{2}{x-1} + \frac{-3x+1}{2(x^2+1)}$$ (7) $$\frac{x^3+3x^2+1}{(x^2+1)^2}$$ **Solution:** $$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2}$$ Let $$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} \dots equ(i)$$ Multiply equ (i) by $(x^2 + 4)^2$ $$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2} \times (x^2 + 1)^2 = \frac{Ax + B}{x^2 + 1} \times (x^2 + 1)^2 + \frac{Cx + D}{(x^2 + 1)^2} \times (x^2 + 1)^2$$ $$x^3 + 3x^2 + 1 = (Ax + B)(x^2 + 1) + Cx + D$$ equ(ii) equ (ii) ⇒ $$x^3 + 3x^2 + 1 = Ax^3 + Ax + Bx^2 + B + Cx + D$$ $$x^3 + 3x^2 + 1 = Ax^3 + Bx^2 + Ax + Cx + B + D$$ $$x^3 + 3x^2 + 1 = Ax^3 + Bx^2 + (A + C)x + (B + D)$$ Compare the coefficients of x^3 , x^2 , x and constant we get $$A = 1 \dots equ(\mathbf{a})$$ $$B = 3 \dots equ(b)$$ $$A + C = 0 \dots equ(c)$$ $$B + D = 1 \dots equ(d)$$ Put $$A = 1$$ in equ (c) $$1 + C = 0$$ $$C = -1$$ Put B = 3 in equ (d) $$3 + D = 1$$ $$D = 1 - 3$$ $$D = -2$$ Put the values of A, B, C and D in equ (i) $$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2} = \frac{1x + 3}{x^2 + 1} + \frac{-1x - 2}{(x^2 + 1)^2}$$ $$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2} = \frac{x + 3}{x^2 + 1} + \frac{-(x + 2)}{(x^2 + 1)^2}$$ $$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2} = \frac{x + 3}{x^2 + 1} - \frac{x + 2}{(x^2 + 1)^2}$$ $$(8) \ \frac{2x^3-1}{x^3+x^2}$$ **Solution:** $$\frac{2x^3-1}{x^3+x^2}$$ As $$\frac{2x^3 - 1}{x^3 + x^2}$$ is improper So $$\begin{array}{c|c} 2 \\ x^2 + x^2 & 2x^3 - 1 \\ \pm 2x^3 & \pm 2x^2 \end{array}$$ $$-2x^2 - 1$$ $$\frac{2x^3 - 1}{x^3 + x^2} = 2 + \frac{-2x^2 - 1}{x^3 + x^2}$$ $$\frac{2x^3 - 1}{x^3 + x^2} = 2 + \frac{-(2x^2 + 1)}{x^2(x + 1)}$$ $$\frac{2x^3 - 1}{x^3 + x^2} = 2 - \frac{2x^2 + 1}{x^2(x + 1)} \dots \text{equ}(\mathbf{A})$$ Now Let $$\frac{-2x^2 - 1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} \quad \dots \cdot \text{equ(i)}$$ Multiply equ (i) by $x^2(x^2 + 5)$ $$\frac{-2x^2 - 1}{x^2(x+1)} \times x^2(x+1) = \frac{A}{x} \times x^2(x+1) + \frac{B}{x^2} \times x^2(x+1) + \frac{C}{x+1} \times x^2(x^2+1)$$ $$-2x^2 - 1 = Ax(x+1) + B(x+1) + Cx^2$$ equ(ii) Put x = 0 in equ (ii) $$-2(0)^{2} - 1 = A(0)(0+1) + B(0+1) + C(0)^{2}$$ $$0 - 1 = 0 + B(1) + 0$$ $$-1 = B$$ $$B = -1$$ $$-2x^2 - 1 = Ax(x+1) + B(x+1) + Cx^2$$ $$-2x^2 - 1 = Ax^2 + Ax + Bx + B + Cx^2$$ $$-2x^2 - 1 = Ax^2 + Cx^2 + Ax + Bx + B$$ $$-2x^{2} - 1 = (A + C)x^{2} + (A + B)x + B$$ By comparing the coefficients of x^3, x^2, x and constant we get $$A + C = -2 \dots \text{equ}(\mathbf{a})$$ $$A + B = 0 \dots \operatorname{equ}(\boldsymbol{b})$$ $$B = -1 \dots \operatorname{equ}(\mathbf{c})$$ Put $$B = -1$$ in equ (b) $$A + (-1) = 0$$ $$A - 1 = 0$$ $$A = 1$$ $$Put A = 1 in equ (a)$$ $$1 + C = -2$$ $$C = -2 - 1$$ $$C = -3$$ Put the values of A, B and C in equ (i) $$\frac{-2x^2 - 1}{x^2(x+1)} = \frac{1}{x} + \frac{-1}{x^2} + \frac{-3}{x+1}$$ $$\frac{-2x^2 - 1}{x^2(x+1)} = \frac{1}{x} - \frac{1}{x^2} - \frac{3}{x+1}$$ # $(9) \frac{4x^2 + 3x + 14}{x^3 - 8}$ #### Solution: $$\frac{4x^{2} + 3x + 14}{x^{3} - 8} = \frac{4x^{2} + 3x + 14}{x^{3} - 2^{3}}$$ $$\frac{4x^{2} + 3x + 14}{x^{3} - 8} = \frac{4x^{2} + 3x + 14}{(x - 2)(x^{2} + 2x + 4)}$$ $$\frac{4x^2 + 3x + 14}{(x-2)(x^2 + 2x + 4)} = \frac{A}{x-2} + \frac{Bx + C}{x^2 + 2x + 4} \dots equ(i)$$ Multiply equ (i) by $(x - 2)(x^2 + 2x + 4)$ $$\frac{4x^2 + 3x + 14}{(x-2)(x^2 + 2x + 4)} \times (x-2)(x^2 + 2x + 4)$$ $$= \frac{A}{x-2} \times (x-2)(x^2+2x+4) + \frac{Bx+C}{x^2+2x+4} \times (x-2)(x^2+2x+4)$$ $$4x^2 + 3x + 14 = A(x^2 + 2x + 4) + (Bx + C)(x - 2)$$equ(ii) Put $$x - 2 = 0 \Rightarrow x = 2$$ in equ (ii) $$4(2)^2 + 3(2) + 14 = A[(2)^2 + 2(2) + 4] + (Bx + C)(0)$$ $$4(4) + 6 + 14 = A(4 + 4 + 4) + 0$$ $$16 + 20 = A(12)$$ $$36 = 12A$$ $$\frac{36}{12} = A$$ $$3 = A$$ $$A = 3$$ $$4x^2 + 3x + 14 = A(x^2 + 2x + 4) + (Bx + C)(x - 2)$$ $$4x^2 + 3x + 14 = Ax^2 + 2Ax + 4A + Bx^2 - 2Bx + Cx - 2C$$ $$4x^2 + 3x + 14 = Ax^2 + Bx^2 + 2Ax - 2Bx + Cx + 4A - 2C$$ $$4x^2 + 3x + 14 = (A+B)x^2 + (2A-2B+C)x + (4A-2C)$$ Compare the coefficients of x^2 , x and constant we get $$A + B = 4 \dots \operatorname{equ}(\boldsymbol{a})$$ $$2A - 2B + C = 3 \dots equ(b)$$ $$4A - 2C = 14 \dots equ(c)$$ Put $$A = 3$$ in equ (a) $$3 + B = 4$$ $$B = 4 - 3$$ $$B=1$$ Put A = 3 in equ (c) $$4(3) - 2C = 14$$ $$12 - 2C = 14$$ $$-2C = 14 - 12$$ $$-2C = 2$$ $$C = \frac{2}{-2}$$ $$C = -1$$ Put the values of A, B and C in equ (i) $$\frac{4x^2 + 3x + 14}{(x - 2)(x^2 + 2x + 4)} = \frac{3}{x - 2} + \frac{1x + (-1)}{x^2 + 2x + 4}$$ $$\frac{4x^2 + 3x + 14}{(x-2)(x^2 + 2x + 4)} = \frac{3}{x-2} + \frac{x-1}{x^2 + 2x + 4}$$ # Q3: Resolve the following fraction into partial fraction $\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2}$ ####
Solution: $$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2}$$ $$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2} = \frac{A}{x+1} + \frac{Bx + C}{x^2+1} + \frac{Dx + E}{(x^2+1)^2} \quad \dots \quad \text{equ(i)}$$ Multiply equ (i) by $(x + 1)(x^2 + 1)^2$ $$\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2} \times (x+1)(x^2+1)^2$$ $$= \frac{A}{x+1} \times (x+1)(x^2+1)^2 + \frac{Bx+C}{x^2+1} \times (x+1)(x^2+1)^2 + \frac{Dx+E}{(x^2+1)^2} \times (x+1)(x^2+1)^2$$ $$x^4 + 3x^2 + x + 1 = A(x^2 + 1)^2 + (Bx + C)(x + 1)(x^2 + 1) + (Dx + E)(x + 1)$$equ(ii) Put $$x + 1 = 0 \Rightarrow x = -1$$ in equ (ii) $$(-1)^4 + 3(-1)^2 + (-1) + 1 = A((-1)^2 + 1)^2 + (Bx + C)(0)(x^2 + 1) + (Dx + E)(0)$$ $$1 + 3(1) - 1 + 1 = A((1 + 1)^2 + 0 + 0$$ $$1 + 3 = A(2)^2$$ $$4 = A(4)$$ $$\frac{4}{4} = A$$ $$1 = A$$ $$A = 1$$ $$equ (ii) \Rightarrow$$ $$x^4 + 3x^2 + x + 1 = A(x^2 + 1)^2 + (Bx + C)(x + 1)(x^2 + 1) + (Dx + E)(x + 1)$$ $$x^4 + 3x^2 + x + 1 = A(x^4 + 2x^2 + 1) + (Bx + C)(x^3 + x + x^2 + 1) + Dx^2 + Dx + Ex + E$$ $$x^4 + 3x^2 + x + 1 = Ax^4 + 2Ax^2 + A + Bx^4 + Bx^2 + Bx^3 + Bx + Cx^3 + Cx + Cx^2 + C + Dx^2 + Dx + Ex + E$$ $$x^4 + 3x^2 + x + 1 = Ax^4 + 2Ax^2 + A + Bx^4 + Bx^2 + Bx^3 + Bx + Cx^3 + Cx + Cx^2 + C + Dx + Ex + A + C + E$$ $$x^4 + 3x^2 + x + 1 = (A + B)x^4 + (B + C)x^3 + (2A + B + C + D)x^2 + (B + C + D + E)x + (A + C + E)$$ $$\text{Compare the coefficients of } x^4, x^3, x^2, x \text{ and constant we get } A + B + C + D + E + A + C + E$$ $$A + B = 1 \quad \text{ equ}(a)$$ $$B + C + D + E = 1 \quad \text{ equ}(a)$$ $$B + C + D + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(b)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ equ}(a)$$ $$A + C + E = 1 \quad \text{ eq$$ # **MATHEMATICS** Class 10th (KPK) Chapter # 5 Sets And Fractions | NAME: | | - | |----------|----------|---| | F.NAME: | | _ | | CLASS: | SECTION: | | | ROLL #: | SUBJECT: | | | ADDRESS: | | | | | | | | SCHOOL: | | | # **UNIT # 5** #### **SETS AND FUNCTIONS** #### Ex # 5.1 #### <u>Set</u> The collection of well-defined and distinct objects is called set. #### **Some Important Sets** Set of Natural numbers = N = $$\{1, 2, 3, 4, \ldots\}$$ Set of Whole numbers = W = $\{0, 1, 2, 3, 4, \ldots\}$ Set of Integers = Z = $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots\}$ Set of Even Integers = Z = $\{0, \pm 2, \pm 4, \ldots\}$ Set of Odd Integers = Z = $\{\pm 1, \pm 3, \pm 5, \ldots\}$ Set of Prime numbers = Z = $\{2, 3, 5, 7, 11, \ldots\}$ Set of Rational numbers $Q = \left\{ x \mid x = \frac{p}{q}, q \neq 0 \land p, q \in Z \right\}$ #### **Operation on sets** #### Union of two sets The union of two sets is a set which contains all the elements of both the sets. #### **Symbol** The symbol of union is U It is denoted by $A \cup B$ and read as A union B #### **Set Builder form** $$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$ #### Example # 1 If $$A = \{1, 2, 3\}$$, $B = \{3, 4, 5, 6\}$ then find $A \cup B$ #### **Solution**: $$A = \{1, 2, 3\}, B = \{3, 4, 5, 6\}$$ Now $$A \cup B = \{1, 2, 3\} \cup \{3, 4, 5, 6\}$$ $A \cup B = \{1, 2, 3, 4, 5, 6\}$ #### **Intersection of two sets** The intersection of two sets is a set which contains all the elements that are common to both the sets. #### **Symbol** The symbol of union is \cap It is denoted by $A \cap B$ and read as A intersection B #### Ex # 5.1 #### Set Builder form $$A \cup B = \{x \mid x \in A \land x \in B\}$$ #### **Disjoint Set** The intersection of two sets have no any common element is called disjoint set. #### Symbol $$A \cap B = \varphi$$ #### Example # 2 If $$A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 7\}$$ $$C = \{5, 11, 12\}, D = \{8, 9, 10\}$$ then $$A \cap B = \{1, 2, 3, 4, 5\} \cap \{3, 4, 5, 6, 7\}$$ $$A \cap B = \{3, 4, 5\}$$ $$B \cap C = \{3, 4, 5, 6, 7\} \cap \{5, 11, 12\}$$ $$B \cap C = \{5\}$$ $$A \cap D = \{1, 2, 3, 4, 5\} \cap \{8, 9, 10\}$$ $$A \cap B = \{\}$$ or \emptyset Thus, A and D are disjoint set. #### Difference of two sets A set that contains all those elements of First Set which are not in Second set. #### **Symbol** It is denoted by $A \setminus B$ or A - B #### Set Builder form $$A \cup B = \{x \mid x \in A \land x \notin B\}$$ #### Example # 3 If $$A = \{5, 6, 7, 8\}, B = \{7, 8, 9, 10\}$$ then find A \B and B \ A #### **Solution:** $$A = \{5, 6, 7, 8\}, \qquad B = \{7, 8, 9, 10\}$$ To Find: $A \setminus B = ?$ $B \setminus A = ?$ Now $$A \setminus B = \{5, 6, 7, 8\} \setminus \{7, 8, 9, 10\}$$ $$A \setminus B = \{5, 6\}$$ And also $$B \setminus A = \{7, 8, 9, 10\} \setminus \{5, 6, 7, 8\}$$ $$B \setminus A = \{9, 10\}$$ #### **Complement of two sets** If U is a universal set and A is subset of U the $U \setminus A$ is called complement of the set A and is denoted by A' or A^c . #### Note: $$A' = U \setminus A$$ $$B' = U \setminus B$$ $$C' = U \setminus C$$ $$U' = U \setminus U$$ $$\emptyset' = U \setminus \emptyset$$ $$U' = U \setminus U = \emptyset$$ $$\emptyset' = U \setminus \emptyset = U$$ #### Example #4 If $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{3, 4, 5\}$, $B = \varphi$ then find: (i)A' #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6\}, A = \{3, 4, 5\}$$ To Find: A' Now $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6\} \setminus \{3, 4, 5\}$$ $$= \{1, 2, 6\}$$ #### (ii)B' #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6\}, B = \varphi$$ To Find: B' Now $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6\} \setminus \varphi$$ $= \{1, 2, 3, 4, 5, 6\}$ # Ex # 5.1 #### Page # 87 # Q1: If $A = \{1, 2, 3\}$, $B = \{0, 1\}$ and $C = \{1, 3, 4\}$ then find: #### (i) $A \cup B$ #### **Solution:** $$A = \{1, 2, 3\}, B = \{0, 1\}$$ To Find: Now #### Ex # 5.1 $$A \cup B = \{1, 2, 3\} \cup \{0, 1\}$$ $A \cup B = \{0, 1, 2, 3\}$ #### (ii) $A \cap B$ #### **Solution:** $$A = \{1, 2, 3\}, B = \{0, 1\}$$ To Find: $A \cap B$ Now $$A \cap B = \{1, 2, 3\} \cap \{0, 1\}$$ $$A \cap B = \{1\}$$ #### (iii) $A \cup C$ **Solution:** $$A = \{1, 2, 3\}, C = \{1, 3, 4\}$$ To Find: $A \cup C$ Now $$A \cup C = \{1, 2, 3\} \cup \{1, 3, 4\}$$ $$A \cup C = \{1, 2, 3, 4\}$$ #### (iv) $A \cap C$ #### Solution: $$A = \{1, 2, 3\}, C = \{1, 3, 4\}$$ To Find: $A \cap C$ Now $$A \cap C = \{1, 2, 3\} \cap \{1, 3, 4\}$$ $$A \cap C = \{1, 3\}$$ $(\mathbf{v}) \mid \mathbf{B} \cup \mathbf{C}$ #### **Solution:** $$B = \{0, 1\} \text{ and } C = \{1, 3, 4\}$$ To Find: $B \cup C$ Now $$B \cup C = \{0,1\} \cup \{1,3,4\}$$ $$B \cup C = \{0, 1, 3, 4\}$$ #### (vi) $A \cap A$ ### **Solution**: $$A = \{1, 2, 3\}$$ To Find: $A\cap A$ Now $$A \cap A = \{1, 2, 3\} \cap \{1, 2, 3\}$$ $$A \cap A = \{1, 2, 3\}$$ #### Ex # 5.1 Ex # 5.1 A'(i) Q2: $|Find A \setminus B|$ and $|B \setminus A|$ when: (i) $A = \{1, 3, 5, 7\},$ $B = \{3, 4, 5, 6, 7, 8\}$ **Solution:** $U = \{1, 2, 3, 4 \dots 20\},\$ **Solution:** $A = \{2, 4, 6, \dots 20\}$ To Find: $A = \{1, 3, 5, 7\},\$ $B = \{3, 4, 5, 6, 7, 8\}$ To Find: A' $A \setminus B=?$ Now $B \setminus A = ?$ $A' = U \setminus A$ Now $= \{1, 2, 3, 4 \dots 20\} \setminus \{2, 4, 6, \dots 20\}$ $A \setminus B = \{1, 3, 5, 7\} \setminus \{3, 4, 5, 6, 7, 8\}$ $= \{1, 3, 5, \dots 19\}$ $A \setminus B = \{1\}$ (ii) B'And also **Solution:** $B \setminus A = \{3, 4, 5, 6, 7, 8\} \setminus \{1, 3, 5, 7\}$ $U = \{1, 2, 3, 4, \dots 20\}, B = \{1, 3, 5, \dots 19\}$ $B \setminus A = \{4, 6, 8\}$ To Find: R'(ii) $A = \{0, \pm 1, \pm 2, \pm 3\},$ $B = \{-1, -2, -3\}$ Now **Solution:** $B' = U \setminus B$ $A = \{0, \pm 1, \pm 2, \pm 3\},\$ $B = \{-1, -2, -3\}$ $= \{1, 2, 3, 4 \dots 20\} \setminus \{1, 3, 5, \dots 19\}$ To Find: $= \{2, 4, 6, \dots 20\}$ $A \setminus B = ?$ C'(iii) $B \setminus A = ?$ **Solution:** Now $U = \{1, 2, 3, 4 \dots 20\},\$ $C = \omega$ To Find: $A \setminus B = \{0, \pm 1, \pm 2, \pm 3\} \setminus \{-1, -2, -3\}$ $A \setminus B = \{0, 1, 2, 3\}$ C'And also Now $B \setminus A = \{-1, -2, -3\} \setminus \{0, \pm 1, \pm 2, \pm 3\}$ $C' = U \setminus C$ $B \setminus A = \{ \}$ $= \{1, 2, 3, 4 \dots 20\} \setminus \{\}$ $= \{1, 2, 3, 4 \dots 20\}$ (iii) $A = \{1, 2, 3, 4, ...\}$, $B = \{1, 3, 5, 7, ...\}$ (iv) $A' \cup B'$ **Solution: Solution:** $U = \{1, 2, 3, 4 \dots 20\}, A = \{2, 4, 6, \dots 20\},\$ $A = \{1, 2, 3, 4, \dots\}, B = \{1, 3, 5, 7, \dots\}$ $B = \{1, 3, 5, \dots 19\}$ To Find: To Find: $A \setminus B=?$ $A' \cup B'$ $B \setminus A = ?$ First we find A': Now $A \setminus B = \{1, 2, 3, 4 ...\} \setminus \{1, 3, 5, 7, ...\}$ $A' = U \setminus A$ = $\{1, 2, 3, 4 \dots 20\} \setminus \{2, 4, 6, \dots 20\}$ $A \setminus B = \{2, 4, 6, ...\}$ $= \{1, 3, 5, \dots 19\}$ And also Now find B': $B \setminus A = \{1, 3, 5, 7, ...\} \setminus \{1, 2, 3, 4 ...\}$ $B \setminus A = \{ \}$ $B' = U \setminus B$ $= \{1, 2, 3, 4 \dots 20\} \setminus \{1, 3, 5, \dots 19\}$ Q3: If $U = \{1, 2, 3, 4 \dots 20\}$, $A = \{2, 4, 6, ... 20\}$ $= \{2, 4, 6, \dots 20\}$ $B = \{1, 3, 5, \dots
19\}$ and $C = \varphi$ then find: Now $A' \cup B' = \{1, 3, 5, \dots 19\} \cup \{2, 4, 6, \dots 20\}$ $A' \cup B' = \{1, 2, 3, 4 \dots 20\}$ | | Ex # 5.1 | | Ex # 5.1 | |------------|--|--------|---| | (v) | $A' \cap B'$ | | Now find C' : | | | Solution: | | <i>C'</i> | | | $\overline{U = \{1, 2, 3, 4 \dots 20\}}, A = \{2, 4, 6, \dots 20\},$ | | $C' = U \setminus C$ | | | $B = \{1, 3, 5, \dots 19\}$ | | $= \{1, 2, 3, 4 \dots 20\} \setminus \{\}$ | | | To Find: | | = {1, 2, 3,4 20} | | | $A' \cap B'$ | | Now | | | First we find A' : | | $A' \cup C' = \{1, 3, 5, \dots 19\} \cup \{1, 2, 3, 4 \dots 20\}$ | | | A' | | | | | | | $A' \cup C' = \{1, 2, 3, 4 \dots 20\}$ | | | $A' = U \setminus A$ | (viii) | A 0 C | | | $= \{1, 2, 3, 4 \dots 20\} \setminus \{2, 4, 6, \dots 20\}$ | (VIII) | $A \cap C'$ | | | = {1, 3, 5, 19} | | Solution: | | | Now find B' : | | $U = \{1, 2, 3, 4 \dots 20\}, A = \{2, 4, 6, \dots 20\},$ | | | B' | | $C = \varphi$ | | | $B' = U \setminus B$ | | To Find: | | | $= \{1, 2, 3, 4 \dots 20\} \setminus \{1, 3, 5, \dots 19\}$ | | $A \cap C'$ | | | $= \{2, 4, 6, \dots 20\}$ | | First we find C' : | | | Now | | <i>C'</i> | | | $A' \cap B' = \{1, 3, 5, \dots 19\} \cap \{2, 4, 6, \dots 20\}$ | | $C' = U \setminus C$ | | | $A^{'} \cap B^{'} = \{ \}$ | | $= \{1, 2, 3, 4 \dots 20\} \setminus \{\}$ | | (vi) | $A' \cap B$ | | $= \{1, 2, 3, 4 \dots 20\}$ | | (11) | Solution: | | Now | | | $U = \{1, 2, 3, 4 \dots 20\}, A = \{2, 4, 6, \dots 20\},$ | | $A \cap C' = \{2, 4, 6, \dots 20\} \cap \{1, 2, 3, 4 \dots 20\}$ | | | $B = \{1, 3, 5, \dots 19\}$ | | $A \cap C' = \{2, 4, 6, \dots 20\}$ | | | To Find: | | | | | $A' \cap B$ | (ix) | $C' \cap C$ | | | First we find A' : | (IX) | Solution: | | | A' | | $U = \{1, 2, 3, 4 \dots 20\}, C = \varphi$ | | | | | To Find: | | | $A' = U \setminus A$ | | $C' \cap C$ | | | $= \{1, 2, 3, 4 \dots 20\} \setminus \{2, 4, 6, \dots 20\}$ | | | | | = {1, 3, 5, 19} | | First we find C': C' | | | Now | | | | | $A' \cap B = \{1, 3, 5, \dots 19\} \cap \{1, 3, 5, \dots 19\}$ | | $C' = U \setminus C$ | | | $A^{'} \cap B = \{1, 3, 5, \dots 19\}$ | | = {1, 2, 3,4 20} \{ } | | (vii) | $A' \cup C'$ | | = {1, 2, 3,4 20} | | | Solution: | | Now | | | $U = \{1, 2, 3, 4 \dots 20\}, A = \{2, 4, 6, \dots 20\},$ | | $C' \cap C = \{1, 2, 3, 4 \dots 20\} \cap \{\}$ | | | $C = \varphi$ | | $C' \cap C = \{\}$ | | | To Find: | | | | | $A' \cup C'$ | | | | | First we find A' : | | | | | A' | | | | | $A' = U \setminus A$ | | | | | $= \{1, 2, 3, 4 \dots 20\} \setminus \{2, 4, 6, \dots 20\}$ | | | | | $= \{1, 3, 5, \dots 19\}$ | | | | | (2, 2, 2, 27) | I | | #### $B' \cup C'$ #### **Solution:** $$U = \{1, 2, 3, 4 \dots 20\}, B = \{1, 3, 5, \dots 19\}$$ and $C = \varphi$ To Find: $B' \cup C'$ First we find B': B' $B' = U \setminus B$ $$= \{1, 2, 3, 4 \dots 20\} \setminus \{1, 3, 5, \dots 19\}$$ $= \{2, 4, 6, \dots 20\}$ Now find C': C' $$C' = U \setminus C$$ $$= \{1, 2, 3, 4 \dots 20\} \setminus \{\}$$ $$= \{1, 2, 3, 4 \dots 20\}$$ Now $$B' \cup C' = \{2,4,6,\dots 20\} \cup \{1,2,3,4\ \dots 20\}$$ $$B' \cup C' = \{1, 2, 3, 4 \dots 20\}$$ # O4: If U = set of natural numbers upto 15and A = set of even numbers upto 15and B = set of odd numbers upto 15 #### Then find (i) $A' \cup B'$ #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}, A = \{2, 4, 6, \dots 14\}$$ $B = \{1, 3, 5, \dots 15\}$ To Find: $A' \cup B'$ First we find A': A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{2, 4, 6, \dots 14\}$$ $$= \{1, 3, 5, \dots 15\}$$ Now find B': B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{1, 3, 5, \dots 15\}$$ $$= \{2, 4, 6, \dots 14\}$$ Now $$A' \cup B' = \{1, 3, 5, \dots 15\} \cup \{2, 4, 6, \dots 14\}$$ $$A^{'} \cup B^{'} = \{1, 2, 3, 4 \dots 15\}$$ #### Ex # 5.1 #### $A' \cap B'$ (ii) #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}, \qquad A = \{2, 4, 6, \dots 14\}$$ $$B = \{1, 3, 5, \dots 15\}$$ To Find: $$A' \cap B'$$ First we find A': A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{2, 4, 6, \dots 14\}$$ $$= \{1, 3, 5, \dots 15\}$$ Now find B': B' $$B' = U \setminus B$$ $$= \{1,2,3,4 \ \dots 15\} \setminus \{1,3,5,\dots 15\}$$ $$= \{2, 4, 6, \dots 14\}$$ Now $$A'\cap B'=\{1,3,5,\dots 15\}\cap \{2,4,6,\dots 14\}$$ $$A^{'} \cap B^{'} = \{ \}$$ U'(iii) #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}$$ To Find: II' $$U' = U \setminus U$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{1, 2, 3, 4 \dots 15\}$$ (iv) ø′ #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}$$ To Find: Ø′ $$\emptyset' = U \setminus \emptyset$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{\}$$ $$= \{1, 2, 3, 4 \dots 15\}$$ #### (v) $B \cap A'$ #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}, A = \{2, 4, 6, \dots 14\}$$ $B = \{1, 3, 5, \dots 15\}$ To Find: $B \cap A'$ First we find A': A' $$A' = U \setminus A$$ = $$\{1, 2, 3, 4 \dots 15\} \setminus \{2, 4, 6, \dots 14\}$$ $= \{1, 3, 5, \dots 15\}$ Now $$B\cap A'=\{1,3,5,\dots 15\}\cap \{1,3,5,\dots 15\}$$ $B \cap A' = \{1, 3, 5, \dots 15\}$ #### (vi) $B \cup B'$ #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}, B = \{1, 3, 5, \dots 15\}$$ To Find: $B \cup B'$ First we find B': $$B' = U \setminus B$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{1, 3, 5, \dots 15\}$$ $$= \{2, 4, 6, \dots 14\}$$ Now $$B \cup B' = \{1, 3, 5, \dots 15\} \cup \{2, 4, 6, \dots 14\}$$ #### $B \cup B' = \{1, 2, 3, 4 \dots 15\}$ #### (vii) $A \cap A'$ ### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}, \qquad A = \{2, 4, 6, \dots 14\}$$ To Find: $A \cap A'$ First we find A': A' $$A' = U \setminus A$$ $$= \{1,2,3,4 \ ... \ 15\} \setminus \{2,4,6,... \ 14\}$$ $= \{1, 3, 5, \dots 15\}$ Now $$A \cap A' = \{2, 4, 6, \dots 14\} \cap \{1, 3, 5, \dots 15\}$$ $A \cap A' = \{\}$ #### (viii) $A \cup B'$ #### **Solution:** $$U = \{1, 2, 3, 4 \dots 15\}, B = \{1, 3, 5, \dots 15\}$$ To Find: $A \cup B'$ First we find B': $$B' = U \setminus B$$ $$= \{1, 2, 3, 4 \dots 15\} \setminus \{1, 3, 5, \dots 15\}$$ $= \{2, 4, 6, \dots 14\}$ $$A \cup B' = \{2, 4, 6, \dots 14\} \cup \{2, 4, 6, \dots 14\}$$ $$A \cup B' = \{2, 4, 6, \dots 14\}$$ #### Ex # 5.2 #### **Properties of Union and Intersection** **Commutative Property of Union:** $$A \cup B = B \cup A$$ **Commutative Property of Intersection:** $$A \cap B = B \cap A$$ **Associative Property of Union:** $$A \cup (B \cup C) = (A \cup B) \cup C$$ #### **Associative Property of Intersection:** $$A \cap (B \cap C) = (A \cap B) \cap C$$ #### **Distributive Property of Union over Intersection:** $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ #### **Distributive Property of Intersection over Union:** $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ #### De-Morgan's Law: For any two sets A and B which are subsets of U then $$(A \cup B)' = A' \cap B'$$ $$(A \cap B)' = A' \cup B'$$ Note: $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cap B)' = U \setminus (A \cap B)$$ #### Example # 5 Verify commutative property of union for the following set. $$A = \{1, 2, 3\}, B = \{4, 5, 6\}$$ #### **Solution:** $$A = \{1, 2, 3\}, B = \{4, 5, 6\}$$ To Prove: Commutative Property of Union: Now $$A \cup B = B \cup A$$ L.H.S: $A \cup B$ $$A \cup B = \{1, 2, 3\} \cup \{4, 5, 6\}$$ $$A \cup B = \{1, 2, 3, 4, 5, 6\}$$ R.H.S: $B \cup A$ $$B \cup A = \{4, 5, 6\} \cup \{1, 2, 3\}$$ $$B \cup A = \{1, 2, 3, 4, 5, 6\}$$ Hence $$A \cup B = B \cup A$$ #### Example # 6 Verify commutative property of intersection for the following set. $$A = \{a, b, c\}, B = \{b, c, d, e\}$$ #### **Solution:** $$A = \{a, b, c\}, B = \{b, c, d, e\}$$ To Prove: Commutative Property of Intersection: Now $$A \cap B = B \cap A$$ L.H.S: $A \cap B$ $$A \cap B = \{a, b, c\} \cap \{b, c, d, e\}$$ $$A \cap B = \{ b, c \}$$ R.H.S: $B \cap A$ $$B \cap A = \{ b, c, d, e \} \cap \{a, b, c \}$$ $$B \cap A = \{ b, c \}$$ Hence $$A \cap B = B \cap A$$ Proved #### Example #7 $A = \{3, 4, 5\}, \ B = \{5, 6, 7\}, \ C = \{8, 9, 10\}$ then prove that $A \cup (B \cup C) = (A \cup B) \cup C$ Solution: $$A = \{3, 4, 5\}, B = \{5, 6, 7\}, C = \{8, 9, 10\}$$ To Prove: Associative Property of Union: $$A \cup (B \cup C) = (A \cup B) \cup C$$ **L.H.S:** $A \cup (B \cup C)$ $$B \cup C = \{5, 6, 7\} \cup \{8, 9, 10\}$$ $$B \cup C = \{5, 6, 7, 8, 9, 10\}$$ Now $$A \cup (B \cup C) = \{3, 4, 5\} \cup \{5, 6, 7, 8, 9, 10\}$$ $$A \cup (B \cup C) = \{3, 4, 5, 6, 7, 8, 9, 10\}$$ **R.H.S:** $(A \cup B) \cup C$ $$A \cup B = \{3, 4, 5\} \cup \{5, 6, 7\}$$ $$A \cup B = \{3, 4, 5, 6, 7\}$$ Now $$(A \cup B) \cup C = \{3, 4, 5, 6, 7\} \cup \{8, 9, 10\}$$ $$(A \cup B) \cup C = \{3, 4, 5, 6, 7, 8, 9, 10\}$$ Hence $$A \cup (B \cup C) = (A \cup B) \cup C$$ Proved #### Ex # 5.2 #### Example #8 $A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{3, 4, 5\}$ then prove that $A \cap (B \cap C) = (A \cap B) \cap C$ $$A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{3, 4, 5\}$$ To Prove: Associative Property of Intersection $$A \cap (B \cap C) = (A \cap B) \cap C$$ **L.H.S:** $A \cap (B \cap C)$ $$B \cap C = \{2, 3, 4\} \cap \{3, 4, 5\}$$ $$B \cap C = \{3, 4\}$$ Now $$A \cap (B \cap C) = \{1, 2, 3\} \cap \{3, 4\}$$ $$A \cap (B \cap C) = \{3\}$$ **R.H.S:** $(A \cap B) \cap C$ $$A \cap B = \{1, 2, 3\} \cap \{2, 3, 4\}$$ $$A \cap B = \{ 2, 3 \}$$ Now $$(A \cap B) \cap C = \{2,3\} \cap \{3,4,5\}$$ $$(A \cap B) \cap C = \{3\}$$ Hence $$A \cap (B \cap C) = (A \cap B) \cap C$$ Proved #### Example #9 $A = \{1, 2, 3, 4\}, \ B = \{5, 6, 7\}, \ C = \{7, 8, 9\}$ then prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Solution: $$A = \{1, 2, 3, 4\}, B = \{5, 6, 7\}, C = \{7, 8, 9\}$$ To prove: Distributive Property of Union over Intersection: $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ L.H.S: $A \cup (B \cap C)$ $$B \cap C = \{5, 6, 7\} \cap \{7, 8, 9\}$$ $$B\cap C=\{\,7\,\}$$ Now $$A \cup (B \cap C) = \{1, 2, 3, 4\} \cup \{7\}$$ $$A \cup (B \cap C) = \{1, 2, 3, 4, 7\}$$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A
\cup B$: $$A \cup B = \{1, 2, 3, 4\} \cup \{5, 6, 7\}$$ $$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$ Now $$A \cup C = \{1, 2, 3, 4\} \cup \{7, 8, 9\}$$ $$A \cup C = \{1, 2, 3, 4, 7, 8, 9\}$$ $$(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6, 7\} \cap \{1, 2, 3, 4, 7, 8, 9\}$$ $$(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 7\}$$ Hence $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ Proved #### Example # 10 $$A = \{a, b, c\}, B = \{c, d, e\}, C = \{e, f, g\}$$ then prove that $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ **Solution:** $$A = \{a, b, c\}, B = \{c, d, e\}, C = \{e, f, g\}$$ To Prove: Distributive Property of Intersection over Union $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ L.H.S: $A \cap (B \cup C)$ $$B \cup C = \{c, d, e\} \cup \{e, f, g\}$$ $$B \cup C = \{c, d, e, f, g\}$$ Now $$A \cap (B \cup C) = \{a, b, c\} \cap \{c, d, e, f, g\}$$ $$A \cap (B \cup C) = \{c\}$$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cap B$: $$A \cap B = \{a, b, c\} \cap \{c, d, e\}$$ $A \cap B = \{c\}$ Now we find $A \cap B$: $$A \cap C = \{a, b, c\} \cap \{e, f, g\}$$ $$A \cap C = \{ \}$$ $$(A \cap B) \cup (A \cap C) = \{c\} \cup \{\}$$ $$(A \cap B) \cup (A \cap C) = \{c\}$$ Hence $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ Proved #### **Example # 11** If $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3\}$, $B = \{3, 4, 5\}$ then verify De-Morgan's Laws **Solution:** #### De-Morgan's Law: $$U = \{1, 2, 3, 4, 5, 6\}, A = \{2, 3\}, B = \{3, 4, 5\}$$ To Prove: $$(i) (A \cup B)' = A' \cap B'$$ $$(ii) (A \cap B)' = A' \cup B'$$ #### Ex # 5.2 $$(A \cup B)' = A' \cap B'$$ L.H.S: $$(A \cup B)'$$ First we find $A \cup B$: $$A \cup B = \{2, 3\} \cup \{3, 4, 5\}$$ $$A \cup B = \{2, 3, 4, 5\}$$ $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{1, 2, 3, 4, 5, 6\} \setminus \{2, 3, 4, 5\}$$ $$(A \cup B)' = \{1, 6\}$$ #### **R.H.S:** $A' \cap B'$ First we find A': $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6\} \setminus \{2, 3\}$$ $$= \{1, 4, 5, 6\}$$ And Also $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6\} \setminus \{3, 4, 5\}$$ $$= \{1, 2, 6\}$$ Now $$A' \cap B' = \{1, 4, 5, 6\} \cap \{1, 2, 6\}$$ $$A' \cap B' = \{1, 6\}$$ Hence $$(A \cup B)' = A' \cap B'$$ Proved $$(A \cap B)' = A' \cup B'$$ **L.H.S:** $(A \cap B)'$ First we find $A \cap B$: $$A \cap B = \{2,3\} \cap \{3,4,5\}$$ $$A \cap B = \{3\}$$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{1, 2, 3, 4, 5, 6\} \setminus \{3\}$$ $$(A \cap B)' = \{1, 2, 4, 5, 6\}$$ #### **R.H.S:** $A' \cup B'$ First we find A': $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6\} \setminus \{2, 3\}$$ $$= \{1, 4, 5, 6\}$$ And Also $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6\} \setminus \{3, 4, 5\}$$ $$= \{1, 2, 6\}$$ Now $$A' \cup B' = \{1, 4, 5, 6\} \cup \{1, 2, 6\}$$ $$A' \cup B' = \{1, 2, 4, 5, 6\}$$ Hence $$(A \cap B)' = A' \cup B'$$ # Ex # 5.2 #### Page # 95 Q1: Verify commutative property of union and intersection for the following sets. (i) $$A = \{1, 2, 3, \dots 12\}$$, $B = \{2, 4, 5, 8, 10, 12\}$ Solution: $$A = \{1, 2, 3, \dots 12\}, B = \{2, 4, 5, 8, 10, 12\}$$ To Prove: $A \cup B = B \cup A$ $A \cap B = B \cap A$ Now #### **Commutative Property of Union:** $A \cup B = B \cup A$ L.H.S: $A \cup B$ $A \cup B = \{1, 2, 3, \dots 12\} \cup \{2, 4, 5, 8, 10, 12\}$ $A \cup B = \{1, 2, 3, \dots 12\}$ R.H.S: $B \cup A$ $B \cup A = \{2, 4, 5, 8, 10, 12\} \cup \{1, 2, 3, \dots 12\}$ $B \cup A = \{1, 2, 3, \dots 12\}$ Hence $A \cup B = B \cup A$ Proved #### **Commutative Property of Intersection:** $A \cap B = B \cap A$ L.H.S: $A \cap B$ $A \cap B = \{1, 2, 3, \dots 12\} \cap \{2, 4, 5, 8, 10, 12\}$ $A \cap B = \{2, 4, 5, 8, 10, 12\}$ R.H.S: $B \cap A$ $B \cap A = \{2, 4, 5, 8, 10, 12\} \cap \{1, 2, 3, \dots 12\}$ $B \cap A = \{2, 4, 5, 8, 10, 12\}$ Hence $A \cap B = B \cap A$ Proved (ii) A = N, $B = \{x \mid x \in N\Lambda \ x \text{ is an even integer}\}\$ #### **Solution**: A = N $A = \{1, 2, 3, 4 \dots \}$ $B = \{x \mid x \in N \land x \text{ is an even integer}\}\$ $B = \{2, 4, 6, 8, \dots\}$ To Prove: $A \cup B = B \cup A$ $A \cap B = B \cap A$ Now #### Ex # 5.2 #### **Commutative Property of Union:** $A \cup B = B \cup A$ L.H.S: $A \cup B$ $A \cup B = \{1, 2, 3, 4 \dots\} \cup \{2, 4, 6, 8, \dots\}$ $A \cup B = \{1, 2, 3, 4 \dots \}$ R.H.S: $B \cup A$ $B \cup A = \{2, 4, 6, 8, ...\} \cup \{1, 2, 3, 4 ...\}$ $B \cup A = \{1, 2, 3, 4 \dots \}$ Hence $A \cup B = B \cup A$ Proved #### **Commutative Property of Intersection:** $A \cap B = B \cap A$ L.H.S: $A \cap B$ $A \cap B = \{1, 2, 3, 4, ...\} \cap \{2, 4, 6, 8, ...\}$ $A \cap B = \{2, 4, 6, 8, \dots\}$ R.H.S: $B \cap A$ $B \cap A = \{2, 4, 6, 8, \dots\} \cap \{1, 2, 3, 4 \dots\}$ $B \cap A = \{2, 4, 6, 8, ...\}$ Hence $A \cap B = B \cap A$ Proved #### (iii) A = Set of first ten prime numbers. B = Set of first ten composite numbers. #### **Solution:** A =Set of first ten prime numbers. $A = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}$ B =Set of first ten composite numbers. $B = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18\}$ To Prove: $A \cup B = B \cup A$ $A \cap B = B \cap A$ Now #### **Commutative Property of Union:** $A \cup B = B \cup A$ L.H.S: $A \cup B$ $A \cup B = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\} \cup \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18\}$ $A \cup B = \{2, 3, 4, 5 \dots 18, 19, 23, 29\}$ R.H.S: $B \cup A$ $B \cup A = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18\} \cup \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}$ $B \cup A = \{2, 3, 4, 5 \dots 18, 19, 23, 29\}$ Hence $A \cup B = B \cup A$ #### **Commutative Property of Intersection:** $$A\cap B=B\cap A$$ L.H.S: $$A \cap B$$ $$A \cap B = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\} \cap \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18\}$$ $$A \cap B = \{\}$$ R.H.S: $$B \cap A$$ $$B \cap A = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18\} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}$$ $$B \cap A = \{\}$$ Hence $$A \cap B = B \cap A$$ Proved # Q2: Verify associative properties of union and intersection for the following sets. (i) $$A = \{a, b, c, \dots z\}, B = \{a, e, i, o, u\},\$$ $C = \{a, d, i, l, m, n, o\}$ #### **Solution:** $$A = \{a, b, c, \dots z\}, B = \{a, e, i, o, u\},\$$ $$C = \{a, d, i, l, m, n, o\}$$ To Prove: $$A \cup (B \cup C) = (A \cup B) \cup C$$ $$A \cap (B \cap C) = (A \cap B) \cap C$$ Now #### **Associative Property of Union:** $$A \cup (B \cup C) = (A \cup B) \cup C$$ **L.H.S:** $A \cup (B \cup C)$ $$B \cup C = \{a, e, i, o, u\} \cup \{a, d, i, l, m, n, o\}$$ $$B \cup C = \{a, d, e, i, l, m, n, o, u\}$$ Now $$A \cup (B \cup C) = \{a, b, c, \dots z\} \cup \{a, d, e, i, l, m, n, o, u\}$$ $$A \cup (B \cup C) = \{a, b, c, \dots \dots z\}$$ **R.H.S:** $(A \cup B) \cup C$ $$A \cup B = \{a, b, c, \dots z\} \cup \{a, e, i, o, u\}$$ $$A \cup B = \{a, b, c, \dots z\}$$ Now $$(A \cup B) \cup C = \{a, b, c, \dots z\} \cup \{a, d, i, l, m, n, o\}$$ $$(A \cup B) \cup C = \{a, b, c, \dots z\}$$ Hence $$A \cup (B \cup C) = (A \cup B) \cup C$$ Proved #### Ex # 5.2 #### **Associative Property of Intersection:** $$A \cap (B \cap C) = (A \cap B) \cap C$$ L.H.S: $$A \cap (B \cap C)$$ $$B \cap C = \{a, e, i, o, u\} \cap \{a, d, i, l, m, n, o\}$$ $$B \cap C = \{a, i, o\}$$ Now $$A \cap (B \cap C) = \{a, b, c, \dots z\} \cap \{a, i, o\}$$ $$A \cap (B \cap C) = \{a, i, o\}$$ **R.H.S:** $$(A \cap B) \cap C$$ $$A \cap B = \{a, b, c, \dots z\} \cap \{a, e, i, o, u\}$$ $$A \cap B = \{a, e, i, o, u\}$$ Now $$(A \cap B) \cap C = \{a, e, i, o, u\} \cap \{a, d, i, l, m, n, o\}$$ $$(A \cap B) \cap C = \{a, i, o\}$$ Hence $$A \cap (B \cap C) = (A \cap B) \cap C$$ Proved (ii) $$A = \{1, 2, 3, \dots 100\}, B = \{2, 4, 6, \dots 100\}, C = \{1, 3, 5, \dots 99\}$$ #### **Solution:** $$A = \{1, 2, 3, \dots 100\}, B = \{2, 4, 6, \dots 100\}$$ $$C = \{1, 3, 5, \dots ... 99\}$$ To Prove: $$A \cup (B \cup C) = (A \cup B) \cup C$$ $$A \cap (B \cap C) = (A \cap B) \cap C$$ Now #### **Associative Property of Union:** $$A \cup (B \cup C) = (A \cup B) \cup C$$ L.H.S: $$A \cup (B \cup C)$$ $$B \cup C = \{2, 4, 6, \dots 100\} \cup \{1, 3, 5, \dots 99\}$$ $$B \cup C = \{1, 2, 3, 4, \dots 100\}$$ Now $$A \cup (B \cup C) = \{1, 2, 3, \dots \dots 100\} \cup \{1, 2, 3, 4, \dots \dots 100\}$$ $$A \cup (B \cup C) = \{1, 2, 3, 4, \dots 100\}$$ **R.H.S:** $(A \cup B) \cup C$ $$A \cup B = \{1, 2, 3, 4, \dots 100\} \cup \{2, 4, 6, \dots 100\}$$ $$A \cup B = \{1, 2, 3, 4, \dots 100\}$$ Now $$(A \cup B) \cup C = \{1, 2, 3, 4, \dots \dots 100\} \cup \{1, 3, 5, \dots \dots 99\}$$ $$(A \cup B) \cup C = \{1, 2, 3, 4, \dots 100\}$$ Hence $$A \cup (B \cup C) = (A \cup B) \cup C$$ #### **Associative Property of Intersection:** $$A \cap (B \cap C) = (A \cap B) \cap C$$ #### L.H.S: $A \cap (B \cap C)$ $$B \cap C = \{2, 4, 6, \dots \dots 100\} \cap \{1, 3, 5, \dots \dots 99\}$$ $$B \cap C = \{ \}$$ Now $$A \cap (B \cap C) = \{1, 2, 3, \dots \dots 100\} \cap \{\}$$ $$A \cap (B \cap C) = \{ \}$$ **R.H.S:** $$(A \cap B) \cap C$$ $$A\cap B = \{1, 2, 3, 4, \dots \dots 100\} \cap \{2, 4, 6, \dots \dots 100\}$$ $$A \cap B = \{ \}$$ Now $$(A \cap B) \cap C = \{ \} \cup \{1, 3, 5, \dots ... 99\}$$ $$(A \cap B) \cap C = \{ \}$$ Hence $$A \cap (B \cap C) = (A \cap B) \cap C$$ Proved # Q3: Verify distributive properties of union over intersection and intersection over union. (i) $$A = \{0, 1, 2\}, B = \{0\}, C = \varphi$$ #### **Solution:** #### **Distributive Property of Union over Intersection:** $$A = \{0, 1, 2\}, B = \{0\}, C = \varphi$$ To Prove: $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ #### L.H.S: $A \cup (B \cap C)$ $$B \cap C = \{0\} \cap \varphi$$ $$B \cap C = \{ \}$$ Now $$A \cup (B \cap C) = \{0, 1, 2\} \cup \{\}$$ $$A \cup (B \cap C) = \{0, 1, 2\}$$ #### **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cup B$: $$A \cup B = \{0, 1, 2\} \cup \{0\}$$ $$A \cup B = \{0, 1, 2\}$$ Now $$A \cup C = \{0, 1, 2\} \cup \varphi$$ $$A \cup C = \{0, 1, 2\}$$ $$(A \cup B) \cap (A \cup C) = \{0, 1, 2\} \cap \{0, 1, 2\}$$ $$(A \cup B) \cap (A \cup C) = \{0, 1, 2\}$$ Hence $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ Proved
Ex # 5.2 #### **Distributive Property of Intersection over Union:** $$A = \{0, 1, 2\}, B = \{0\}, C = \varphi$$ To Prove: $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ L.H.S: $A \cap (B \cup C)$ $$B \cup C = \{0\} \cup \varphi$$ $$B \cup C = \{0\}$$ Now $$A \cap (B \cup C) = \{0, 1, 2\} \cap \{0\}$$ $$A \cap (B \cup C) = \{0\}$$ **R.H.S:** $$(A \cup B) \cap (A \cup C)$$ First we find $A \cap B$: $$A \cap B = \{0, 1, 2\} \cap \{0\}$$ $$A \cap B = \{0\}$$ Now we find $A \cap B$: $$A \cap C = \{0, 1, 2\} \cap \varphi$$ $$A \cap C = \{ \}$$ $$(A \cap B) \cup (A \cap C) = \{0\} \cup \{\}$$ $$(A \cap B) \cup (A \cap C) = \{0, 1, 2\}$$ Hence $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ Proved (ii) $$A = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\},\$$ $$B = \{-1, -2, -3, -4, -5\}, C = \{-1, -2, +3, +4\}$$ #### **Solution:** #### **Distributive Property of Union over Intersection:** $$A = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}, B = \{-1, -2, -3, -4, -5\}$$ $C = \{-1, -2, +3, +4\}$ To Prove: $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ L.H.S: $A \cup (B \cap C)$ $$B \cap C = \{-1, -2, -3, -4, -5\} \cap \{-1, -2, +3, +4\}$$ $$B \cap C = \{-1, -2\}$$ Now $$A \cup (B \cap C) = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cup \{-1, -2\}$$ $$A \cup (B \cap C) = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cup B$: $$A \cup B = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cup \{-1, -2, -3, -4, -5\}$$ $$A \cup B = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$$ Now $$A \cup C = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cup \{-1, -2, +3, +4\}$$ $$A \cup C = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$$ $(A \cup B) \cap (A \cup C) = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cap \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$ $(A \cup B) \cap (A \cup C) = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$ Hence $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Proved #### **Distributive Property of Intersection over Union:** $$A = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}, B = \{-1, -2, -3, -4, -5\}$$ $$C = \{-1, -2, +3, +4\}$$ To Prove: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ L.H.S: $A \cap (B \cup C)$ $$B \cup C = \{-1, -2, -3, -4, -5\} \cup \{-1, -2, +3, +4\}$$ $$B \cup C = \{-1, -2, \pm 3, \pm 4, -5\}$$ Now $$A \cap (B \cup C) = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cap \{-1, -2, \pm 3, \pm 4, -5\}$$ $A \cap (B \cup C) = \{-1, -2, \pm 3, \pm 4, -5\}$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cap B$: $$A \cap B = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cap \{-1, -2, -3, -4, -5\}$$ $$A \cap B = \{-1, -2, -3, -4, -5\}$$ Now we find $A \cap B$: $$A \cap C = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} \cap \{-1, -2, +3, +4\}$$ $$A \cap C = \{-1, -2, +3, +4\}$$ $$(A\cap B)\cup (A\cap C)=\{-1,-2,-3,-4,-5\}\cup \ \{-1,-2,+3,+4\}$$ $$(A \cap B) \cup (A \cap C) = \{-1, -2, \pm 3, \pm 4, -5\}$$ Hence $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ Proved #### Q4: Verify De Morgan's laws for the following sets. (i) $$U = \{x \mid x \in N \land 1 \le x \le 20\},\$$ $$A = \{2, 3, 5, 7, 11, 12, 13, 17\}$$ $$B = \{1, 4, 6, 8, 10, 14, 17, 18\}$$ #### **Solution:** #### De-Morgan's Law: $$U = \{x \mid x \in N \land 1 \le x \le 20\}$$ $$U = \{1, 2, 3, 4 \dots 20\}$$ $$A = \{2, 3, 5, 7, 11, 12, 13, 17\}, B = \{1, 4, 6, 8, 10, 14, 17, 18\}$$ To Prove: $$(A \cup B)' = A' \cap B'$$ L.H.S: $$(A \cup B)'$$ First we find $A \cup B$: $$A \cup B = \{2, 3, 5, 7, 11, 12, 13, 17\} \cup \{1, 4, 6, 8, 10, 14, 17, 18\}$$ $$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18\}$$ #### Ex # 5.2 $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{1, 2, 3, 4 \dots 20\} \setminus$$ $$(A \cup B)' = \{9, 15, 16, 19, 20\}$$ #### **R.H.S:** $A' \cap B'$ First we find A': $$A' = U \setminus A$$ = $$\{1, 2, 3, 4 \dots 20\} \setminus \{2, 3, 5, 7, 11, 12, 13, 17\}$$ $$= \{1, 4, 6, 8, 9, 10, 14, 15, 16, 18, 19, 20\}$$ And Also $$B' = B \setminus A$$ $$= \{1, 2, 3, 4 \dots 20\} \setminus \{1, 4, 6, 8, 10, 14, 17, 18\}$$ $$= \{2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 19, 20\}$$ Now $$A' \cap B' = \{1, 4, 6, 8, 9, 10, 14, 15, 16, 18, 19, 20\} \cap \{2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 19, 20\}$$ $$A' \cap B' = \{9, 15, 16, 19, 20\}$$ Hence $$(A \cup B)' = A' \cap B'$$ Proved #### De-Morgan's Law: $$U = \{x \mid x \in N \land 1 \le x \le 20\}$$ $$U = \{1, 2, 3, 4 \dots 20\}$$ $$A = \{2, 3, 5, 7, 11, 12, 13, 17\}$$ $$B = \{1, 4, 6, 8, 10, 14, 17, 18\}$$ To Prove: $$(A \cap B)' = A' \cup B'$$ **L.H.S:** $(A \cap B)'$ First we find $A \cap B$: $$A \cap B = \{2, 3, 5, 7, 11, 12, 13, 17\} \cap \{1, 4, 6, 8, 10, 14, 17, 18\}$$ $A \cap B = \{17\}$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{1, 2, 3, 4, ..., 20\} \setminus \{17\}$$ $$(A \cap B)' = \{1, 2, 3, 4, ..., 15, 16, 18, 19, 20\}$$ #### **R.H.S:** $A' \cup B'$ First we find A': $$A' = U \setminus A$$ $$= \{1, 2, 3, 4 \dots 20\} \setminus \{2, 3, 5, 7, 11, 12, 13, 17\}$$ $$= \{1, 4, 6, 8, 9, 10, 14, 15, 16, 18, 19, 20\}$$ And Also $$B' = B \setminus A$$ = $$\{1, 2, 3, 4 \dots 20\} \setminus \{1, 4, 6, 8, 10, 14, 17, 18\}$$ $$= \{2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 19, 20\}$$ Now $$\{2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 19, 20\}$$ $$A' \cup B' = \{1, 2, 3, 4, ..., 15, 16, 18, 19, 20\}$$ Hence $$(A \cap B)' = A' \cup B'$$ Proved (ii) $$U = \{1, 2, 3, \dots 10\}, A = \{2, 4, 6, 8, 10\}$$ $B = \{1, 3, 5, 7, 9\}$ #### **Solution:** #### De-Morgan's Law: $$U = \{1, 2, 3, \dots 10\}, A = \{2, 4, 6, 8, 10\}$$ $$B = \{1, 3, 5, 7, 9\}$$ To Prove: $$(A \cup B)' = A' \cap B'$$ #### L.H.S: $(A \cup B)'$ First we find $A \cup B$: $$A \cup B = \{2, 4, 6, 8, 10\} \cup \{1, 3, 5, 7, 9\}$$ $$A \cup B = \{1, 2, 3, \dots \dots 10\}$$ $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{1, 2, 3, \dots \dots 10\} \setminus \{1, 2, 3, \dots \dots 10\}$$ $$(A \cup B)' = \{ \}$$ #### **R.H.S:** $A' \cap B'$ First we find A': $$A' = U \setminus A$$ = $$\{1, 2, 3, \dots \dots 10\} \setminus \{2, 4, 6, 8, 10\}$$ $$= \{1, 3, 5, 7, 9\}$$ And Also $$B' = B \setminus A$$ $$= \{1, 2, 3, \dots 10\} \setminus \{1, 3, 5, 7, 9\}$$ $$= \{2, 4, 6, 8, 10\}$$ Now $$A' \cap B' = \{1, 3, 5, 7, 9\} \cap \{2, 4, 6, 8, 10\}$$ $$A' \cap B' = \{ \}$$ Hence $$(A \cup B)' = A' \cap B'$$ Proved $$U = \{1, 2, 3, \dots 10\}, A = \{2, 4, 6, 8, 10\}$$ $B = \{1, 3, 5, 7, 9\}$ #### **Solution:** #### De-Morgan's Law: $$U = \{1, 2, 3, \dots 10\}, A = \{2, 4, 6, 8, 10\}$$ $$B = \{1, 3, 5, 7, 9\}$$ To Prove: $$(A \cap B)' = A' \cup B'$$ L.H.S: $$(A \cap B)'$$ First we find $A \cap B$: $$A \cap B = \{2, 4, 6, 8, 10\} \cap \{1, 3, 5, 7, 9\}$$ $$A \cap B = \{ \}$$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{1, 2, 3, \dots \dots 10\} \setminus \{\}$$ $$(A \cap B)' = \{1, 2, 3, \dots \dots 10\}$$ #### **R.H.S:** $A' \cup B'$ First we find A': $$A' = U \setminus A$$ $$= \{1, 2, 3, \dots 10\} \setminus \{2, 4, 6, 8, 10\}$$ $$= \{1, 3, 5, 7, 9\}$$ And Also $$B' = B \setminus A$$ = $$\{1, 2, 3, \dots \dots 10\} \setminus \{1, 3, 5, 7, 9\}$$ $$= \{2, 4, 6, 8, 10\}$$ Now $$A' \cup B' = \{1, 3, 5, 7, 9\} \cup \{2, 4, 6, 8, 10\}$$ $$A' \cup B' = \{1, 2, 3, \dots \dots 10\}$$ Hence $$(A \cap B)' = A' \cup B'$$ #### **Overlapping Set** Two sets are overlapping set if At least one element is common in both sets None of them is a subset of each other #### Venn Diagram A Venn diagram is a visual way to show the relationships among or between sets that share something in common. #### Representation The Venn diagram consists of two or more overlapping circles, with each circle representing a set of elements and universal set is represented by a rectangle. #### Note: If two circles overlap, the members in the overlap belong to both sets; if three circles overlap, the members in the overlap belong to all three sets. #### Example # 14 $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$ and $C = \{3, 4, 7, 8\}$ Then verify the following with the help of Venn Diagrams (i) $$A \cup B = B \cup A$$ #### **Solution:** $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ To Prove: $A \cup B = B \cup A$ L.H.S: $A \cup B$ $A \cup B = \{1, 2, 3, 4\} \cup \{3, 4, 5, 6\}$ $A \cup B = \{1, 2, 3, 4, 5, 6\}$ R.H.S: $B \cup A$ $B \cup A = \{3, 4, 5, 6\} \cup \{1, 2, 3, 4\}$ $B \cup A = \{1, 2, 3, 4, 5, 6\}$ Hence $A \cup B = B \cup A$ #### Ex # 5.3 (ii) $A \cap B = B \cap A$ #### **Solution:** $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ To Prove: Commutative Property of Intersection: Now $A \cap B = B \cap A$ L.H.S: $A \cap B$ $A \cap B = \{1, 2, 3, 4\} \cap \{3, 4, 5, 6\}$ $A \cap B = \{3, 4\}$ R.H.S: $B \cap A$ $B \cap A = \{3, 4, 5, 6\} \cap \{1, 2, 3, 4\}$ $B \cap A = \{3, 4\}$ Hence $A \cap B = B \cap A$ Proved (iii) $A \cup (B \cup C) = (A \cup B) \cup C$ #### **Solution:** $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ and $C = \{3, 4, 7, 8\}$ To Prove: $A \cup (B \cup C) = (A \cup B) \cup C$ L.H.S: $A \cup (B \cup C)$ $B \cup C = \{3, 4, 5, 6\} \cup \{3, 4, 7, 8\}$ $B \cup C = \{3, 4, 5, 6, 7, 8\}$ Now $A \cup (B \cup C) = \{1, 2, 3, 4\} \cup \{3, 4, 5, 6, 7, 8\}$ $A \cup (B \cup C) = \{1, 2, 3, 4, 5, 6, 7, 8\}$ Ex # 5.3 **R.H.S:** $(A \cup B) \cup C$ $A \cup B = \{1, 2, 3, 4\} \cup \{3, 4, 5, 6\}$ $A \cup B = \{1, 2, 3, 4, 5, 6\}$ Now $(A \cup B) \cup C = \{1, 2, 3, 4, 5, 6\} \cup \{3, 4, 7, 8\}$ $(A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$ Hence $A \cup (B \cup C) = (A \cup B) \cup C$ Proved (iv) $A \cap (B \cap C) = (A \cap B) \cap C$ **Solution:** $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ and $C = \{3, 4, 7, 8\}$ To Prove: $$A \cap (B \cap C) = (A \cap B) \cap C$$ **L.H.S:** $A \cap (B \cap C)$ $B \cap C = \{3, 4, 5, 6\} \cap \{3, 4, 7, 8\}$ $B \cap C = \{3, 4\}$ Now $A \cap (B \cap C) = \{1, 2, 3, 4\} \cap \{3, 4\}$ $A \cap (B \cap C) = \{3, 4\}$ **R.H.S:** $(A \cap B) \cap C$ $A \cap B = \{1, 2, 3, 4\} \cap \{3, 4, 5, 6\}$ $A \cap B = \{3, 4\}$ Now $(A \cap B) \cap C = \{3, 4\} \cap \{3, 4, 7, 8\}$ $(A \cap B) \cap C = \{3, 4\}$ Hence $A \cap (B \cap C) = (A \cap B) \cap C$ Proved Ex # 5.3 $A \cup (B \cap C)
= (A \cup B) \cap (A \cup C)$ **Solution:** $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ and $C = \{3, 4, 7, 8\}$ To prove: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ **L.H.S:** $A \cup (B \cap C)$ $B \cap C = \{3, 4, 5, 6\} \cap \{3, 4, 7, 8\}$ $$B \cap C = \{3, 4\}$$ Now $A \cup (B \cap C) = \{1, 2, 3, 4\} \cup \{3, 4\}$ $A \cup (B \cap C) = \{1, 2, 3, 4\}$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cup B$: $A \cup B = \{1, 2, 3, 4\} \cup \{3, 4, 5, 6\}$ $A \cup B = \{1, 2, 3, 4, 5, 6\}$ Now $A \cup C = \{1, 2, 3, 4\} \cup \{3, 4, 7, 8\}$ $A \cup C = \{1, 2, 3, 4, 7, 8\}$ $(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6\} \cap$ {1, 2, 3, 4, 7, 8} $(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4\}$ Hence $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (vi) $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ #### **Solution:** $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ and $C = \{3, 4, 7, 8\}$ To Prove: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ L.H.S: $A \cap (B \cup C)$ $B \cup C = \{3, 4, 5, 6\} \cup \{3, 4, 7, 8\}$ $B \cup C = \{3, 4, 5, 6, 7, 8\}$ Now $A \cap (B \cup C) = \{1, 2, 3, 4\} \cap \{3, 4, 5, 6, 7, 8\}$ $A \cap (B \cup C) = \{3, 4\}$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cap B$: $A \cap B = \{1, 2, 3, 4\} \cap \{3, 4, 5, 6\}$ $A \cap B = \{3, 4\}$ Now we find $A \cap C$: $A \cap C = \{1, 2, 3, 4\} \cap \{3, 4, 7, 8\}$ $A \cap C = \{3,4\}$ $(A \cap B) \cup (A \cap C) = \{3,4\} \cup \{3,4\}$ $(A \cap B) \cup (A \cap C) = \{3, 4\}$ Hence $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Proved #### Example # 15 $U = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ (i) $A \cup B = B \cup A$ #### **Solution:** $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ To Find: $A \cup B$ Now #### Ex # 5.3 $A \cup B = \{2, 5, 6\} \cup \{1, 2, 3\}$ $A \cup B = \{1, 2, 3, 5, 6\}$ #### (ii) $A \cap B$ #### **Solution:** $A = \{2, 5, 6\}, B = \{1, 2, 3\}$ To Find: $A \cap B$ Now $A \cap B = \{2, 5, 6\} \cap \{1, 2, 3\}$ $A \cap B = \{2\}$ #### (iii) A' #### **Solution**: $U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{2, 5, 6\}$ To Find: A' Now $A'=U\setminus A$ $= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2, 5, 6\}$ $= \{1, 3, 4, 7\}$ #### (iv) | **B** #### **Solution:** $U = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{1, 2, 3\}$ To Find: B' Now $$B' = U \setminus B$$ $= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3\}$ $= \{4, 5, 6, 7\}$ $(\mathbf{v}) \mid (\mathbf{A} \cup \mathbf{B})'$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ To Find: $(A \cup B)'$ First we find $A \cup B$: $$A \cup B = \{2, 5, 6\} \cup \{1, 2, 3\}$$ $$A \cup B = \{1, 2, 3, 5, 6\}$$ Now $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 5, 6\}$$ $$(A\cup B)'=\{4,7\}$$ (vi) $A' \cap B'$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2, 5, 6\}$$ $= \{1, 3, 4, 7\}$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3\}$$ $= \{4, 5, 6, 7\}$ Now $$A' \cap B' = \{1, 3, 4, 7\} \cap \{4, 5, 6, 7\}$$ $$A' \cap B' = \{4, 7\}$$ Ex # 5.3 (vii) $(A \cap B)'$ ## **Solution**: $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ To Find: $(A \cap B)'$ First we find $A \cap B$: $$A \cap B = \{2, 5, 6\} \cap \{1, 2, 3\}$$ $$A \cap B = \{2\}$$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2\}$$ $$(A \cap B)' = \{1, 3, 4, 5, 6, 7\}$$ (viii) $A' \cup B'$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2, 5, 6\}$$ $$= \{1, 3, 4, 7\}$$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3\}$$ $$= \{4, 5, 6, 7\}$$ Now $$A' \cup B' = \{1, 3, 4, 7\} \cup \{4, 5, 6, 7\}$$ $$A' \cup B' = \{1, 3, 4, 5, 6, 7\}$$ # Ex # 5.3 Page # 106 Q1: If $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 3, 6, 7\}$ then draw Venn diagrams for the following (i) $A \cup B$ $A \cup B = \{1, 2, 3, 4, 5\} \cup \{2, 3, 6, 7\}$ $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$ (ii) $A \cap B$ # **Solution**: $A \cap B$ $A\cap B=\{1,2,3,4,5\}\cap\{2,3,6,7\}$ $A \cap B = \{2, 3\}$ Q2: If $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{3, 4, 5, 6, 7, 8\}$ and $C = \{5, 6, 9, 10\}$ then verify with the help of Venn diagrams. (i) $A \cup (B \cup C) = (A \cup B) \cup C$ #### **Solution:** $A = \{1, 2, 3, 4, 5, 6\}, B = \{3, 4, 5, 6, 7, 8\}$ and $C = \{5, 6, 9, 10\}$ To Prove: Associative Property of Union: $A \cup (B \cup C) = (A \cup B) \cup C$ **L.H.S:** $A \cup (B \cup C)$ $B \cup C = \{3, 4, 5, 6, 7, 8\} \cup \{5, 6, 9, 10\}$ $B \cup C = \{3, 4, 5, 6, 7, 8, 9, 10\}$ Now $A \cup (B \cup C) = \{1, 2, 3, 4, 5, 6\} \cup \{3, 4, 5, 6, 7, 8, 9, 10\}$ $A \cup (B \cup C) = \{1, 2, 3, 4, \dots \dots 10\}$ Ex # 5.3 **R.H.S:** $(A \cup B) \cup C$ $A \cup B == \{1, 2, 3, 4, 5, 6\} \cup \{3, 4, 5, 6, 7, 8\}$ $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ Now $(A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\} \cup \{1, 2, 3, 4, 6, 6, 7, 8\} \cup \{1, 2, 3, 4, 6, 6, 7, 8\} \cup \{1, 2, 3, 4, 6, 6, 7, 8\} \cup \{1, 4, 4, 6, 6, 7, 8\} \cup \{1, 6$ $\{5,6,9,10\}$ $(A \cup B) \cup C = \{1, 2, 3, 4, \dots \dots 10\}$ Hence $A \cup (B \cup C) = (A \cup B) \cup C$ Proved (ii) $A \cap (B \cap C) = (A \cap B) \cap C$ #### **Solution:** $A = \{1, 2, 3, 4, 5, 6\}, B = \{3, 4, 5, 6, 7, 8\}$ and $C = \{5, 6, 9, 10\}$ To Prove: Associative Property of Intersection: $A \cap (B \cap C) = (A \cap B) \cap C$ L.H.S: $A \cap (B \cap C)$ $B \cap C = \{3, 4, 5, 6, 7, 8\} \cap \{5, 6, 9, 10\}$ $B \cap C = \{5, 6\}$ Now $A \cap (B \cap C) = \{1, 2, 3, 4, 5, 6\} \cap \{5, 6\}$ $A \cap (B \cap C) = \{5, 6\}$ **R.H.S:** $(A \cap B) \cap C$ $A \cap B = \{1, 2, 3, 4, 5, 6\} \cap \{3, 4, 5, 6, 7, 8\}$ $A \cap B = \{3, 4, 5, 6\}$ Now $(A \cap B) \cap C = \{3, 4, 5, 6\} \cup \{5, 6, 9, 10\}$ $(A \cap B) \cap C = \{5,6\}$ (iii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ #### **Solution**: $A = \{1, 2, 3, 4, 5, 6\}, B = \{3, 4, 5, 6, 7, 8\}$ and $C = \{5, 6, 9, 10\}$ To Prove: #### **Distributive Property of Union over Intersection:** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ L.H.S: $A \cup (B \cap C)$ $B \cap C = \{3, 4, 5, 6, 7, 8\} \cap \{5, 6, 9, 10\}$ $B \cap C = \{5,6\}$ Now $A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6\} \cup \{5, 6\}$ $A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6\}$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cup B$: $A \cup B = \{1, 2, 3, 4, 5, 6\} \cup \{3, 4, 5, 6, 7, 8\}$ $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ Now $A \cup C = \{1, 2, 3, 4, 5, 6\} \cup \{5, 6, 9, 10\}$ $A \cup C = \{1, 2, 3, 4, 5, 6, 9, 10\}$ $(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6, 7, 8\} \cap$ {1, 2, 3, 4, 5, 6, 9, 10} $(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6\}$ Hence $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Proved #### Ex # 5.3 (iv) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ #### **Solution:** $A = \{1, 2, 3, 4, 5, 6\}, B = \{3, 4, 5, 6, 7, 8\}$ and $C = \{5, 6, 9, 10\}$ To Prove: #### **Distributive Property of Intersection over Union:** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ L.H.S: $A \cap (B \cup C)$ $B \cup C = \{3, 4, 5, 6, 7, 8\} \cup \{5, 6, 9, 10\}$ $B \cup C = \{3, 4, 5, 6, 7, 8, 9, 10\}$ Now $A\cap (B\cup C)=\{1,2,3,4,5,6\}\cap \{3,4,5,6,7,8,9,10\}$ $A \cap (B \cup C) = \{3, 4, 5, 6\}$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cap B$: $A \cap B = \{1, 2, 3, 4, 5, 6\} \cap \{3, 4, 5, 6, 7, 8\}$ $A \cap B = \{3, 4, 5, 6\}$ Now we find $A \cap C$: $A \cap C = \{1, 2, 3, 4, 5, 6\} \cap \{5, 6, 9, 10\}$ $A \cap C = \{5,6\}$ $(A \cap B) \cup (A \cap C) = \{3, 4, 5, 6\} \cup \{5, 6\}$ $(A \cap B) \cup (A \cap C) = \{3, 4, 5, 6\}$ Hence $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ # Q1: If $U = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$ Draw Venn diagrams for the following. (i) A' #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{1, 2, 3, 4\}$$ $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 4\}$$ $$= \{5, 6, 7\}$$ (ii) **B**' #### **Solution**: $$U = \{1, 2, 3, 4, 5, 6, 7\}, B = \{3, 4, 5\}$$ $B' = U \setminus B$ $= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 3, 5, 7, 9\}$ $= \{1, 2, 6, 7\}$ (iii) $A' \cup B'$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 4\}$$ $= \{5, 6, 7\}$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 3, 5, 7, 9\}$$ $= \{1, 2, 6, 7\}$ Now $$A' \cup B' = \{5, 6, 7\} \cup \{1, 2, 6, 7\}$$ $$A' \cup B' = \{1, 2, 5, 6, 7\}$$ Ex # 5.3 (iv) $A' \cap B'$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 4\}$$ $$= \{5, 6, 7\}$$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 3, 5, 7, 9\}$$ $$= \{1, 2, 6, 7\}$$
Now $$A' \cap B' = \{5,6,7\} \cap \{1,2,6,7\}$$ $$A' \cap B' = \{6, 7\}$$ $(\mathbf{v}) \mid (\mathbf{A} \cup \mathbf{B})' = \mathbf{A}' \cap \mathbf{B}'$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$ To Prove: #### De-Morgan's Law: $$(A \cup B)' = A' \cap B'$$ **L.H.S:** $(A \cup B)'$ First we find $A \cup B$: $$A \cup B = \{1, 2, 3, 4\} \cup \{3, 4, 5\}$$ $$A \cup B = \{1, 2, 3, 4, 5\}$$ $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 4, 5\}$$ $$(A \cup B)' = \{6, 7\}$$ **R.H.S:** $A' \cap B'$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 4\}$$ $= \{5, 6, 7\}$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 3, 5, 7, 9\}$$ $= \{1, 2, 6, 7\}$ Now $$A' \cap B' = \{5,6,7\} \cap \{1,2,6,7\}$$ $$A' \cap B' = \{6, 7\}$$ Hence $$(A \cup B)' = A' \cap B'$$ Proved $$(\mathbf{vi}) \mid (A \cap B)' = A' \cup B'$$ #### **Solution:** $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$ To Prove: #### De-Morgan's Law: $$(A\cap B)'=A'\cup B'$$ L.H.S: $(A \cap B)'$ First we find $A \cap B$: $$A \cap B = \{1, 2, 3, 4\} \cap \{3, 4, 5\}$$ $A \cap B = \{3, 4\}$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{3, 4\}$$ $$(A \cap B)' = \{1, 2, 5, 6, 7\}$$ #### **R.H.S:** $A' \cup B'$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 4\}$$ $= \{5, 6, 7\}$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 3, 5, 7, 9\}$$ $= \{1, 2, 6, 7\}$ #### Ex # 5.3 Now $$A' \cup B' = \{5,6,7\} \cup \{1,2,6,7\}$$ $$A' \cup B' = \{1, 2, 5, 6, 7\}$$ Hence $$(A \cap B)' = A' \cup B'$$ Proved # Q4: If $U = \{a, b, c, 1, 2, 3, 4\}$, $A = \{c, 3\}$ and $B = \{a, 3, 4\}$ then draw Venn diagrams (i) A' #### **Solution:** $$U = \{a, b, c, 1, 2, 3, 4\}, A = \{c, 3\}$$ $A' = U \setminus A$ $$= \{a, b, c, 1, 2, 3, 4\} \setminus \{c, 3\}$$ $$= \{a, b, 1, 2, 4\}$$ (ii) | **B**' #### **Solution:** $$U = \{a, b, c, 1, 2, 3, 4\}, B = \{a, 3, 4\}$$ $$B' = U \setminus B$$ $$= \{a, b, c, 1, 2, 3, 4\} \setminus \{a, 3, 4\}$$ $$= \{b, c, 1, 2\}$$ (iii) $A \setminus B$ #### **Solution:** $$\overline{A} = \{c, 3\}$$, $B = \{a, 3, 4\}$ $A \setminus B = \{c, 3\} \setminus \{a, 3, 4\}$ (iv) $B \setminus A$ #### **Solution:** $$A = \{c, 3\}, B = \{a, 3, 4\}$$ $$B \setminus A = \{a, 3, 4\} \setminus \{c, 3\}$$ $$= \{a, 4\}$$ Q5: If $U = \{a, b, c, d, e, f, g\}$, $A = \{a, b, c\}$ and $B = \{c, d, e\}$ then verify De Morgan's laws with the help of Venn diagrams. #### **De-Morgan's Law:** #### **Solution:** $$U = \{a, b, c, d, e, f, g\}, A = \{a, b, c\}$$ and $$B = \{c, d, e\}$$ To Prove: $$(A \cup B)' = A' \cap B'$$ L.H.S: $(A \cup B)'$ First we find $A \cup B$: $$A \cup B = \{a, b, c\} \cup \{c, d, e\}$$ $$A \cup B = \{a, b, c, d, e\}$$ $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{a, b, c, d, e, f, g\} \setminus \{a, b, c, d, e\}$$ $$(A \cup B)' = \{f, g\}$$ R.H.S: $A' \cap B'$ First we find A': $$A' = U \setminus A$$ $$= \{a, b, c, d, e, f, g\} \setminus \{a, b, c\}$$ $$= \{d, e, f, g\}$$ And Also $$B' = U \setminus B$$ $$= \{a, b, c, d, e, f, g\} \setminus \{c, d, e\}$$ $$= \{a, b, f, g\}$$ Now $$A' \cap B' = \{d, e, f, g\} \cap \{a, b, f, g\}$$ $$A' \cap B' = \{f, g\}$$ $\mathbf{Ex} # \mathbf{5.3}$ Hence $$(A \cup B)' = A' \cap B'$$ Proved #### De-Morgan's Law: #### **Solution:** $$U = \{a, b, c, d, e, f, g\}, A = \{a, b, c\}$$ and $$B = \{c, d, e\}$$ To Prove: $$(A \cap B)' = A' \cup B'$$ L.H.S: $(A \cap B)'$ First we find $A \cap B$: $$A \cap B = \{a, b, c\} \cap \{c, d, e\}$$ $$A \cap B = \{c\}$$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{a, b, c, d, e, f, g\} \setminus \{c\}$$ $$(A \cap B)' = \{a, b, d, e, f, g\}$$ **R.H.S:** $A' \cup B'$ First we find A': $$A' = U \setminus A$$ $$= \{a, b, c, d, e, f, g\} \setminus \{a, b, c\}$$ $$= \{d, e, f, g\}$$ And Also $$B' = U \setminus B$$ $$= \{a, b, c, d, e, f, g\} \setminus \{c, d, e\}$$ $$= \{a, b, f, g\}$$ Now $$A' \cup B' = \{d, e, f, g\} \cup \{a, b, f, g\}$$ $$A' \cup B' = \{a, b, d, e, f, g\}$$ $Hence(A \cap B)' = A' \cup B'$ Proved #### Ordered Pairs and Cartesian Product Ordered Pairs Any two numbers x and y written in the form of (x, y) is called ordered pair. In (x, y), x is the first element and y is the second element. #### Note In (x, y), the order is of numbers is important. (2, 3) is different from (3, 2) $$(x, y) \neq (y, x)$$ unless $x = y$ The ordered pair of (a, b) = (c, d), if and only if, a = c and b = d #### Example # 16 Find x and y given (2x, x + y) = (6, 2) #### **Solution:** $$(2x, x + y) = (6,2)$$ Two ordered pairs are equal, if and only if the corresponding elements are equal. Hence $$2x = 6 \dots equ(i)$$ $$x + y = 2 \dots equ(i)$$ Now $$2x = 6$$ $$x = \frac{6}{2}$$ $$x = 3$$ Put x = 3 in equ (ii) $$3 + y = 2$$ $$y = 2 - 3$$ $$y = -1$$ #### **Cartesian Product** The Cartesian product of A and B is the set of all ordered pairs in which first element from A and second element from B. It is denoted by $A \times B$ and read as A cross B **Symbolically** $$A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$$ #### <u>Note</u> $A \times B \neq B \times A$ for non-empty and unequal sets A and B $$A \times \emptyset = \emptyset \times A = \emptyset$$ #### **Binary Relation** If A and B are any two non-empty sets, then a binary relation R from set A to set B is a subset of the Cartesian product $A \times B$. In other words $R \subseteq A \times B$ #### Ex # 5.4 When $(x, y) \in R$, we say x is related to y by R, written x R y Otherwise, if $(a, b) \notin R$, we write a R b. #### Example # 17 $A = \{a, b\}$ and $B = \{1, 2\}$ then find $A \times B$ and also write all possible binary relation #### **Solution:** $$A = \{a, b\} \text{ and } B = \{1, 2\}$$ Now $$A \times B = \{a, b\} \times \{1, 2\}$$ $$= \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$ As number of elements in $A \times B = 2 \times 2 = 4$ Thus number of all possible subset / binary relation of $A \times B = 2^4 = 16$ Now $$R_1 = \varphi$$ $$R_2 = \{(a, 1)\}$$ $$R_3 = \{(a, 2)\}$$ $$R_4 = \{(b, 1)\}$$ $$R_5 = \{(b, 2)\}$$ $$R_6 = \{(a, 1), (a, 2)\}$$ $$R_7 = \{(a, 1)(b, 1)\}\$$ $R_8 = \{(a, 1), (b, 2)\}\$ $$R_9 = \{(a, 2), (b, 1)\}$$ $$R_{10} = \{(a, 2), (b, 2)\}$$ $$R_{11} = \{(b, 1), (b, 2)\}$$ $$R_{12} = \{(a, 1), (a, 2), (b, 1)\}$$ $$R_{13} = \{(a, 1), (a, 2), (b, 2)\}$$ $$R_{14} = \{(a, 1), (b, 1), (b, 2)\}$$ $$R_{15} = \{(a, 2), (b, 1), (b, 2)\}$$ $$R_{16} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$ Similarly, total number of binary relation in $$B \times A = 2^4 = 16$$ #### **Example # 18** $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ then find $A \times B$ and write any five relation from A to B. #### **Solution:** $$A = \{1, 2\}$$ and $B = \{1, 2, 3\}$ $$A \times B = \{1, 2\} \times \{1, 2, 3\}$$ $$= \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$$ Now Five binary relation from A to B are $$R_1 = \varphi$$ $R_2 = \{(1,1), (1,2)\}$ $R_3 = \{(1,2), (2,1)\}$ $R_4 = \{(1,1)\}$ $R_5 = \{(2,1), (2,2), (2,3)\}$ #### **Domain of a Binary Relation** The set of all first elements of the ordered pairs in binary relation is called domain of a binary relation. Domain of a relation is denoted by Dom(R) #### **Symbolically** $$Dom(R) = \{a \in A | (a,b) \in R\}$$ #### Range of a Binary Relation The set of all second elements of the ordered pairs in binary relation is called range of a binary relation. Range of a relation is denoted by Ran(R) #### **Symbolically** Range (R) = $$\{b \in A | (a, b) \in R\}$$ #### **Example # 19** $A = \{1, 2\}$ and $B = \{1, 2, 3\}$. Define a binary relation R from A to B as R = $\{(a, b) \in A \times B | a < b\}$ Find the ordered pairs in R Find the Domain and Range of R. Is 1R3, 2R2? #### **Solution:** $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ First we find ordered pairs $$A \times B = \{1, 2\} \times \{1, 2, 3\}$$ $$= \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$$ As $R = \{(a,b) \in A \times B | a < b\}$ In tabular form $$R = \{ (1, 2), (1, 3), (2, 3) \}$$ Now Dom $(R) = \{1, 2\}$ and Range $(R) = \{2, 3\}$ As 1R3 means $(1, 3) \in R$ so it is true And 2R2 means $(2, 2) \notin R$ so 2 is not related with 3 # Ex # 5.4 Page # 109 Q1: If $A = \{1, 2, 3\}$, $B = \{4, 5\}$ then (i) Write three binary relations from A to B. Solution: $$\overline{A} = \{1, 2, 3\}, B = \{4, 5\} A \times B = \{1, 2, 3\} \times \{4, 5\} = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$$ Three binary relation from A to B are $$R_1 = \{(1, 4), (1, 5)\}$$ $$R_2 = \{(2, 4), (2, 5)\}$$ $$R_3 = \{(3, 4), (3, 5)\}$$ (ii) Write four binary relations from B to A. Solution: $$A = \{1, 2, 3\}, B = \{4, 5\}$$ $B \times A = \{4, 5\} \times \{1, 2, 3\}$ $= \{(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3)\}$ Now Four binary relation from B to A are $$R_1 = \{(4, 1)\}$$ $$R_2 = \{(4, 1), (4, 2)\}$$ $$R_3 = \{(4, 1), (4, 2), (4, 3)\}$$ $$R_4 = \{(4, 1), (4, 2), (4, 3), (5, 1)\}$$ (iii) Write four binary relations on A. # **Solution**: $$A = \{1, 2, 3\}$$ $$A \times A = \{1, 2, 3\} \times \{1, 2, 3\}$$ $$= \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$ Now Four binary relation in A are $$R_1 = \{(1, 2), (1, 3)\}$$ $$R_2 = \{(1, 1), (1, 2), (1, 3)\}$$ $$R_3 = \{(2, 1), (2, 2)\}$$ $$R_4 = \{(1, 1)\}$$ (iv) Write two binary relations on B. # **Solution**: $$\overline{B} = \{4, 5\}$$ $$B \times B = \{4, 5\} \times \{4, 5\}$$ $$= \{(4, 4), (4, 5), (5, 4), (5, 5)\}$$ Now Two binary relation in B are $$R_1 = \{(4, 4)\}$$ $$R_2 = \{(4, 4), (4, 5)\}$$ #### Ex # 5.4 #### Q2: If $A = \{1, 2, 3, 4\}$, $B = \{1, 3, 5\}$ and $R = \{(x, y) | y < x\}$ is a binary relation from A to B, then write it in tabular form. #### **Solution:** $$A = \{1, 2, 3, 4\}, B = \{1, 3, 5\}$$ $$R = \{(x, y) | y < x\}$$ Now $$A \times B = \{1, 2, 3, 4\} \times \{1, 3, 5\}$$ $$A \times B = \{(1, 1), (1, 3), (1, 5), (2, 1),
(2, 3), (2, 4), (2,$$ $$5), (3, 1), (3, 3), (3, 5), (4, 1), (4, 3), (4, 5)$$ As the condition for binary relation is: y < x So Binary relation in Tabular form $$R = \{(2, 1), (3, 1), (4, 1), (4, 3)\}$$ #### **Q3:** Domain of binary relation $R = \{(x, y) | y = 2x\}$ is the set $\{0, 4, 8\}$, find Range of R. #### **Solution:** Domain of $R = \{0, 4, 8\}$ Binary Relation $R = \{(x, y)|y = 2x\}$ To find: Range of R = ? As the condition is given: $$y = 2x equ(i)$$ As Dom (R) = $$x = \{0, 4, 8\}$$ Now Put x = 0 in equ(i) y = 2(0) v = 0 Put x = 4 in equ(i) y = 2(4) v = 8 Put x = 8 in equ(i) y = 2(8) y = 16 Thus $Ran(R) = \{0, 8, 16\}$ #### O4: Domain of binary relation $$R = \{(x, y)|y + 1 = 2x^2\}$$ is set N. Find its range. #### **Solution:** Domain of $R = N = \{1, 2, 3, 4 ...\}$ Binary Relation $R = \{(x, y)|y + 1 = 2x^2\}$ #### Ex # 5.4 To find: Range of R = ? As the condition is given: $$y + 1 = 2x^2$$ $$y = 2x^2 - 1 \dots equ(i)$$ As Dom (R) = $$x = \{1, 2, 3, 4 \dots \}$$ Now Put x = 1 in equ(i) $$v = 2(1)^2 - 1$$ $$y = 2(1) - 1$$ $$y = 2 - 1$$ $$y = 1$$ Put x = 2 in equ(i) $$y = 2(2)^2 - 1$$ $$y = 2(4) - 1$$ $$y = 8 - 1$$ $$y = 7$$ Put x = 3 in equ(i) $$y = 2(3)^2 - 1$$ $$y = 2(9) - 1$$ $$y = 18 - 1$$ $$y = 17$$ Thus $Ran(R) = \{1, 7, 17, \dots \}$ #### **Arrow Diagram of a Relation** Let $$A = \{1, 2, 3\}, B = \{x, y\}$$ $R = \{(1, y), (2, x), (2, y), (3, x)\}$ be a relation from A to B. The arrow diagram of R is: #### **Function** Let two non-empty sets, then a binary relation *f* is said to be a function if: Dom f = First Set There should be no repetition in domain in f #### **Explanation** Let A and B are two non-empty sets, then a binary relation *f* is said to be a function from A to B if: Dom f = Set A There should be no repetition in the first element of all ordered pairs in f Symbolically, we write it as $f: A \to B$ and say f is function from A to B. #### Example # 20 $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$ then which of the following are functions? (i) $$f_1 = \{(1,a), (2,b)\}$$ #### **Solution:** $$f_1 = \{(1, a), (2, b)\}$$ #### For function $$Dom f_1 = \{1, 2\} \neq A$$ Thus f_1 is not a function because it does not satisfy the first condition of function. (ii) $$f_2 = \{(1, a), (2, b), (3, c), (3, d)\}$$ #### **Solution:** $$f_2 = \{(1, a), (2, b), (3, c), (3, d)\}$$ #### For function $$Dom f_2 = \{1, 2, 3\} = A$$ As there is repetition in first element i.e. 3 is repeated. Thus f_2 is not a function because it does not satisfy the first condition of function. #### Ex # 5.5 (iii) $$f_3 = \{(1, a), (2, b), (3, c)\}$$ #### **Solution:** $$f_3 = \{(1, a), (2, b), (3, c)\}$$ #### For function $$Dom f_3 = \{1, 2, 3\} = A$$ As there is no repetition in first element Thus f_3 is a function because it satisfies both the conditions of function. (iv) $$f_4 = \{(1, a), (2, a), (3, d)\}$$ #### **Solution:** $$f_4 = \{(1, a), (2, b), (3, c)\}$$ #### For function $$Dom f_4 = \{1, 2, 3\} = A$$ As there is no repetition in first element Thus f_4 is a function because it satisfies both the conditions of function. #### Domain, Co-domain and Range of a function Let $f: \to B$ be a function, then the set A is called domain of "f" The set B is co-domain of f and the set of second elements of all ordered pairs contained in f is called range of function. #### Note: Range is always a subset of co-domain. i.e. Range $f \subseteq B$. #### Example: Let $$A = \{1, 2, 3\}$$ and $B = \{1, 2, 3, 4, 5, 6\}$ $f: A \longrightarrow B$ as shown in the following figure. Ex # 5.5 # **Kinds of a function** # 1. Into function Let f be a function from A to B, then f is into function if $Range f \neq B$. # **Example** Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$ then a function f from A to B is defined by $f = \{(1, a), (2, a), (3, b)\}$ As Range $f = \{a, b\} \neq B$ Thus f is into function Written as: $f: A \xrightarrow{\text{into}} B$ # 2. Onto Function (Surjective Function) Let f be a function from A to B, then f is onto function if $Range\ f = B$. # **Example** Let $A = \{3, 4, 5\}$ and $B = \{d, e, h\}$ then $f = \{(3, d), (4, e), (5, h)\}$ As Range $f = \{d, e, h\} = B$ Thus f is onto function Written as: $f: A \xrightarrow{onto} B$ # 3. One-one Function Let f be a function and if there is no repetition in the second elements (Range) then it is one-one function. Written as: $f: A \xrightarrow{one-one} B$ #### **Example** Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$ then $f = \{(1, a), (2, b), (3, c)\}$ As Range $f = \{a, b, c\}$ And also no repetition in range Thus f is one-one function #### Ex # 5.5 # 4. Into and one-one function (Injective function) Let f be a function from A to B, then f is into and one-one function or injective function if . Range $f \neq B$ There is no repetition in the second element (Range) Written as: $f: A \xrightarrow{\text{injective}} B$ # Example Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$ then $f = \{(1, a), (2, b), (3, c)\}$ As Range $f = \{a, b, c\} \neq B$ And also no repetition in range Thus f is injective function # 5. One-one and onto function (Bijective Function) Let f be a function from A to B, then f is oneone and onto function or bijective function if Range f = B. There is no repetition in the second element (Range) Written as: $f: A \xrightarrow{\text{bijective}} B$ # **Example** Let $A = \{3, 4, 5\}$ and $B = \{d, e, h\}$ then As Range $f = \{d, e, h\} = B$ And also no repetition in range Thus f is bijective function # **One-one correspondence** If A and B are two non-empty sets then each element of A is paired with one and only one element of B and each element of B is paired with one and only one element of A is called one-one correspondence. In other words, if both the sets have the same number of elements. # **Example** Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$ then one-one correspondence is given by $f = \{(1, a), (2, b), (3, c), (4, d)\}$ In one-one function every element of the set A is associated with one and only one element of set B. This means that Range f may not be equal to set B. # **Example** Let $C = \{1, 2, 3\}$ and $D = \{a, b, c, d\}$ then oneone correspondence is given by $$f = \{(1, a), (2, b), (3, c)\}$$ From figure, it is clear that there does not exist one – one correspondence between set C and D because $d \in D$ is unpaired. # Ex # 5.5 # Page # 115 Q1: $A = \{1, 2, 3, 4\}$, $B = \{6, 7\}$ and the following are the relations from A to B, then state whether these are functions are not? If these are functions then state which kind of functions are these? (i) $$R_1 = \{(1, 6), (2, 7), (3, 6)\}$$ # **Solution:** $R_1 = \{(1, 6), (2, 7), (3, 6)\}$ For function, $Dom R_1 = A$ $Dom R_1 = \{1, 2, 3\} \neq A$ Thus R_1 is not a function because its $Dom R_1 \neq A$. (ii) $R_2 = \{(1, 6), (2, 6), (3, 7), (4, 7)\}$ # **Solution:** $R_2 = \{(1, 6), (2, 6), (3, 7), (4, 7)\}$ For function, $Dom R_1 = A$ $Dom R_1 = \{1, 2, 3, 4\} = A$ And there is no repetition in Domain. Thus R_2 is a function from A to B # **Kind of function** Now *Range* $R_2 = \{6, 7\} = B$ Hence R_2 is Onto function. (iii) $$R_3 = \{(1,6), (2,6), (3,6), (4,6)\}$$ # **Solution:** $R_3 = \{(1, 6), (2, 6), (3, 6), (4, 6)\}$ For function, $Dom R_1 = A$ $Dom R_1 = \{1, 2, 3, 4\} = A$ And there is no repetition in Domain. Thus R_2 is a function from A to B # **Kind of function** Now Range $R_3 = \{6\} \neq B$ Hence R_3 is Into function. # Q2: Which of the following relations on set {a, b, c, d} are functions? State the kind of functions as well. (i) $\{(a, b), (c, d), (b, d), (d, b)\}$ ## **Solution:** $\{(a, b), (c, d), (b, d), (d, b)\}$ Let $R = \{(a, b), (c, d), (b, d), (d, b)\}$ For function, Dom R = A $Dom R = \{a, b, c, d\} = A$ And there is no repetition in Domain. Thus *R* is a function in A # **Kind of function** Now $Range\ R = \{b, d\} \neq B$ Hence *R* is Into function. (ii) $\{(b, a), (c, b), (a, b), (d, d)\}$ **Solution:** $\{(b, a), (c, b), (a, b), (d, d)\}$ Let $R = \{(b, a), (c, b), (a, b), (d, d)\}$ For
function, Dom R = A $Dom R = \{a, b, c, d\} = A$ And there is no repetition in Domain. Thus *R* is a function in A **Kind of function** Now Range $R = \{a, b, d\} \neq B$ Hence R is Into function. (iii) $\{(d, c), (c, b), (a, b), (d, d)\}$ **Solution:** $\{(d, c), (c, b), (a, b), (d, d)\}$ Let $R = \{(d, c), (c, b), (a, b), (d, d)\}$ For function, Dom R = A $Dom R = \{a, c, d\} \neq A$ Thus *R* is not a function because its $Dom R \neq A$. (iv) $\{(a, b), (b, c), (c, b), (d, a)\}$ **Solution:** $\{(a, b), (b, c), (c, b), (d, a)\}$ Let $R = \{(a, b), (b, c), (c, b), (d, a)\}$ For function, Dom R = A $Dom R = \{a, b, c, d\} = A$ And there is no repetition in Domain. Thus *R* is a function in A Kind of function Now Range $R = \{a, b, c\} \neq B$ Hence R is Into function. Q3: If $A = \{0, 1, 2, 3\}$, $B = \{x, y, z, p\}$ then state, whether the following relations shows that there exists one — one correspondence between the elements of sets A and B, if not, give reasons. Ex # 5.5 (i) $\{(0,x),(2,z),(3,y),(1,p)\}$ **Solution:** $\{(0,x),(2,z),(3,y),(1,p)\}$ As each element of set A is paired with one and only element of set B. So, it is one – one correspondence. (ii) $\{(0,x),(1,z),(2,y),(3,z)\}$ **Solution**: $\{(0,x),(1,z),(2,y),(3,z)\}$ As each element of set A is not paired with each element of set B. Thus, it is not one – one correspondence. Q4: If $A = \{a, b, c\}$, $B = \{2, 3, 4, 5\}$ then state, whether the following relations shows that there exists one—one correspondence between the elements of sets A and B, if not what kind of the relations they are? (i) $\{(a, 2), (b, 3), (c, 4)\}$ Solution: $\{(a, 2), (b, 3), (c, 4)\}$ As each element of set A is not paired with each element of set B. Thus, it is not one – one correspondence. Now Let $f = \{(a, 2), (b, 3), (c, 4)\}$ For function, Dom f = A $$Dom f = \{a, b, c\} = A$$ And there is no repetition in Domain. Thus f is a function from A to B # Kind of function Now *Range* $$R = \{2, 3, 4\} \neq B$$ And also no repetition in range Thus f is injective function (ii) $\{(a, 3), (b, 4), (c, 3)\}$ # Solution: $\{(a, 3), (b, 4), (c, 3)\}$ As each element of set A is not paired with each element of set B. Thus, it is not one – one correspondence. Now Let $$f = \{(a, 3), (b, 4), (c, 3)\}$$ For function, Dom f = A $$Dom f = \{a, b, c\} = A$$ And there is no repetition in Domain. Thus f is a function from A to B # **Kind of function** Now *Range* $$R = \{3, 4\} \neq B$$ And also no repetition in range Thus *f* is injective function # Hints for Q5 $$X \times Y = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5),$$ $$(2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7),$$ $$(3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$$ $$Y \times X = \{(5, 1), (5, 2), (5, 3), (5, 4), (6, 1),$$ $$Y \times X = \{(5, 1), (5, 2), (5, 3), (5, 4), (6, 1), (6, 2), (6, 3), (6, 4), (7, 1), (7, 2), (7, 3), (7, 4), (8, 1), (8, 2), (8, 3), (8, 4)\}$$ Ex # 5.5 - Q5: If $X = \{1, 2, 3, 4\}$ and $Y = \{5, 6, 7, 8\}$ then write - (i) a function from X to Y. Solution: a function from X to Y. $$f = \{(1, 5), (2, 8), (3, 7), (4, 6)\}$$ For function, Dom f = X $$Dom f = \{1, 2, 3, 4\} = X$$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ # (ii) a one – one function from X to Y. Solution: a one – one function from X to Y. $$f = \{(1, 5), (2, 8), (3, 7), (4, 6)\}$$ For function, Dom f = X $$Dom f = \{1, 2, 3, 4\} = X$$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ Now *Range* $$f = \{5, 6, 7, 8\} = B$$ And also no repetition in range Thus f is one – one function from X to Y # (iii) a relation which shows that there exist one – one corresponding between X and Y. Solution: a relation which shows that there exist one – one corresponding between X and Y. # Chapter #5 #### Ex # 5.5 Let $f = \{(1, 5), (2, 8), (3, 7), (4, 6)\}$ *Dom* $f = \{1, 2, 3, 4\} = X$ *Range* $f = \{5, 6, 7, 8\} = B$ As each element of set X is paired with one and only element of set Y. So, it is one — one correspondence. # (iv) a function which is onto from Y to X. Solution: a function which is onto from Y to X. Let $f = \{(5,1), (6,4), (7,3), (8,2)\}$ For function, Dom f = Y $Dom f = \{5, 6, 7, 8\} = Y$ And there is no repetition in Domain. Thus f is a function in $Y \times X$ Now *Range* $f = \{1, 2, 3, 4\} = X$ Hence f is Onto function from Y to X. # (v) bijective function from Y to X. Solution: bijective function from Y to X Let $f = \{(5,1), (6,4), (7,3), (8,2)\}$ For function, Dom f = Y $Dom f = \{5, 6, 7, 8\} = Y$ And there is no repetition in Domain. Thus f is a function in $Y \times X$ Now *Range* $f = \{1, 2, 3, 4\} = X$ And also no repetition in range Hence f is bijective function from Y to X. Ex # 5.5 (vi) a function from X to Y which is neither one — one nor onto. **Solution:** a function from X to Y which is neither one – one nor onto. $f = \{(1, 6), (2, 8), (3, 7), (4, 6)\}$ For function, Dom f = X $Dom f = \{1, 2, 3, 4\} = X$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ Now *Range* $f = \{6, 7, 8\} \neq B$ And there is also repetition in range Hence f is a function from X to Y which is neither one — one nor onto. Q6: Let $A = \{1, 2, 3, 4, 5\}$. Check whether the following sets are functions on A. in case these are functions, indicate their ranges. Which function is onto. (i) $\{(1,5),(2,3),(3,3),(4,2),(5,1)\}$ **Solution:** $\{(1,5), (2,3), (3,3), (4,2), (5,1)\}$ Let $R = \{(1,5), (2,3), (3,3), (4,2), (5,1)\}$ For function, Dom R = A $Dom R = \{1, 2, 3, 4, 5\} = A$ And there is no repetition in Domain. Thus *R* is a function in A Kind of function Now *Range* $R = \{1, 2, 3, 5\} \neq A$ As Range $R \neq A$. Thus, it is not Onto function. (ii) $\{(1,1),(2,4),(3,2),(4,1),(5,3)\}$ **Solution:** $\{(1, 1), (2, 4), (3, 2), (4, 1), (5, 3)\}$ Let $R = \{(1,1), (2,4), (3,2), (4,1), (5,3)\}$ For function, Dom R = A $Dom R = \{1, 2, 3, 4, 5\} = A$ And there is no repetition in Domain. Thus R is a function in A # **Kind of function** Now *Range* $$R = \{1, 2, 3, 4\} \neq A$$ As Range $R \neq A$. Thus, it is not Onto function. # (iii) $| \{(1,2), (2,1), (3,1), (4,4), (5,5) \}$ # **Solution:** $$\{(1, 2), (2, 1), (3, 1), (4, 4), (5, 5)\}$$ Let $$R = \{(1, 2), (2, 1), (3, 1), (4, 4), (5, 5)\}$$ For function, Dom R = A $$Dom R = \{1, 2, 3, 4, 5\} = A$$ And there is no repetition in Domain. Thus *R* is a function in A # Kind of function Now *Range* $$R = \{1, 2, 4, 5\} \neq A$$ As *Range* $R \neq A$. Thus, it is not Onto function. # Review Ex#5 Page # 116-117 - Q2: If U = set of natural numbers upto 100 and A = set of even numbers upto 100 B = set of odd numbers upto 100. Then find - (i) $A' \cup B'$ # **Solution:** $$U = \{1, 2, 3, 4 \dots 100\}, A = \{2, 4, 6, \dots 100\}$$ $B = \{1, 3, 5, \dots 99\}$ To Find: $A' \cup B'$ First we find A': A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4 \dots 100\} \setminus \{2, 4, 6, \dots 100\}$$ $= \{1, 3, 5, \dots 99\}$ Now find B': R' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4 \dots 100\} \setminus \{1, 3, 5, \dots 99\}$$ $= \{2, 4, 6, \dots 100\}$ $$A' \cup B' = \{1, 3, 5, \dots 99\} \cup \{2, 4, 6, \dots 100\}$$ $$A' \cup B' = \{1, 2, 3, 4 \dots 100\}$$ # Review Ex # 5 (ii) $A' \cap B'$ # **Solution:** $$U = \{1, 2, 3, 4 \dots 100\}, \qquad A = \{2, 4, 6, \dots 100\}$$ $$B = \{1, 3, 5, \dots 99\}$$ To Find: $A' \cup B'$ First we find A': A' $$A' = U \setminus A$$ = $$\{1, 2, 3, 4 \dots 100\} \setminus \{2, 4, 6, \dots 100\}$$ $$= \{1, 3, 5, \dots 99\}$$ Now find B': B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4 \dots 100\} \setminus \{1, 3, 5, \dots 99\}$$ $= \{2, 4, 6, \dots 100\}$ Now $$A' \cap B' = \{1, 3, 5, \dots 99\} \cap \{2, 4, 6, \dots 100\}$$ $$A' \cap B' = \{ \}$$ # (iii) $A \cap B'$ # Solution: $$U = \{1, 2, 3, 4 \dots 100\}, A = \{2, 4, 6, \dots 100\}$$ $B = \{1, 3, 5, \dots 99\}$ To Find: $A \cup B'$ First we find B': B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4 \dots 100\} \setminus \{1, 3, 5, \dots 99\}$$ $$= \{2, 4, 6, \dots 100\}$$ Now $$A \cap B' = \{2, 4, 6, \dots 100\} \cap \{2, 4, 6, \dots 100\}$$ $$A \cap B' = \{2, 4, 6, \dots 100\}$$ # (iv) $A' \cap B$ # **Solution**: $$U = \{1, 2, 3, 4 \dots 100\}, A = \{2, 4, 6, \dots 100\}$$ $B = \{1, 3, 5, \dots 99\}$ To Find: $A' \cup B$ $A \cup B$ First we find A': A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4 \dots 100\} \setminus \{2, 4, 6, \dots 100\}$$ $$= \{1, 3, 5, \dots 99\}$$ Now $$A' \cap B = \{1, 3, 5, \dots 99\} \cap \{1, 3, 5, \dots 99\}$$ $$A' \cap B = \{1, 3, 5, \dots 99\}$$ #### Review Ex # 5 # Q3: $A = \{1, 2, 3, 5, 7\}$, $B = \{2, 4, 6\}$ and $C = \{2, 5, 9\}$ Verify the following. # (i) Associative property of Union Solution: $$A = \{1, 2, 3, 5, 7\}, B = \{2, 4, 6\} \text{ and } C = \{2, 5, 9\}$$ To Prove: Associative Law of Union: Now $$A \cup (B \cup C) = (A \cup B) \cup C$$ **L.H.S:** $A \cup (B \cup C)$ $$B \cup C = \{2, 4, 6\} \cup \{2, 5, 9\}$$ $$B \cup C = \{2, 4, 5, 6, 9\}$$ Now $$A \cup (B \cup C) = \{1, 2, 3, 5, 7\} \cup \{2, 4, 5, 6, 9\}$$ $$A \cup (B \cup C) = \{1, 2, 3, 4, 5, 6, 7, 9\}$$ **R.H.S:** $(A \cup B) \cup C$ $$A \cup B = \{1, 2, 3, 5, 7\} \cup \{2, 4, 6\}$$ $$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$ Now $$(A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7\} \cup \{2, 5, 9\}$$ $$(A \cup B) \cup C = \{1, 2, 3, 4, 5, 6, 7, 9\}$$ Hence $$A \cup (B \cup C) = (A \cup B) \cup C$$ Proved # (ii) Associative property of Intersection # **Solution**: $$A = \{1, 2, 3, 5, 7\}, B = \{2, 4, 6\}$$ and $C = \{2, 5, 9\}$ To Prove: Associative property of Intersection Now $$A \cap (B \cap C) = (A \cap B) \cap C$$ **L.H.S:** $A \cap (B \cap C)$ $$B \cap C = \{2, 4, 6\} \cap \{2, 5, 9\}$$ $$B \cap C = \{2\}$$ Now $$A \cap (B \cap C) = \{1, 2, 3, 5, 7\} \cap \{2\}$$ $$A \cap (B \cap C) = \{2\}$$ **R.H.S:** $(A \cap B) \cap C$ $$A \cap B = \{1, 2, 3, 5, 7\} \cap \{2, 4, 6\}$$ $$A \cap B = \{ 2 \}$$ $$(A \cap B) \cap C = \{2\} \cap \{2, 5, 9\}$$ $$(A \cap B) \cap C = \{2\}$$ Hence $$A \cap (B \cap C) = (A \cap B) \cap C$$ Proved #### Review Ex # 5 # (iii) Distributive
property of union over intersection Solution: $$A = \{1, 2, 3, 5, 7\}, B = \{2, 4, 6\}$$ and $C = \{2, 5, 9\}$ To prove: Distributive property of union over intersection Nov $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ **L.H.S:** $A \cup (B \cap C)$ $$B \cap C = \{2, 4, 6\} \cap \{2, 5, 9\}$$ $$B \cap C = \{ 2 \}$$ Now $$A \cup (B \cap C) = \{1, 2, 3, 5, 7\} \cup \{2\}$$ $$A \cup (B \cap C) = \{1, 2, 3, 5, 7\}$$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cup B$: $$A \cup B = \{1, 2, 3, 5, 7\} \cup \{2, 4, 6\}$$ $$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$ Now $$A \cup C = \{1, 2, 3, 5, 7\} \cup \{2, 5, 9\}$$ $$A \cup C = \{1, 2, 3, 4, 5, 7, 9\}$$ $$(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6, 7\} \cap$$ $$(A \cup B) \cap (A \cup C) = \{1, 2, 3, 5, 7\}$$ Hence $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ Proved # (iv) Distributive property of intersection over union Solution: $$A = \{1, 2, 3, 5, 7\}, B = \{2, 4, 6\}$$ and $$C = \{2, 5, 9\}$$ To Prove: Distributive property of intersection over union Now $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ **L.H.S:** $A \cap (B \cup C)$ $$B \cup C = \{2, 4, 6\} \cup \{2, 5, 9\}$$ $$B \cup C = \{2, 4, 5, 6, 9\}$$ Now $$A \cap (B \cup C) = \{1, 2, 3, 5, 7\} \cap \{2, 4, 5, 6, 9\}$$ $$A \cap (B \cup C) = \{2, 5\}$$ # Chapter #5 #### Review Ex # 5 ``` R.H.S: (A \cup B) \cap (A \cup C) First we find A \cap B: A \cap B = \{1, 2, 3, 5, 7\} \cap \{2, 4, 6\} A \cap B = \{ 2 \} Now we find A \cap C: A \cap C = \{1, 2, 3, 5, 7\} \cap \{2, 5, 9\} A \cap C = \{2, 5\} (A \cap B) \cup (A \cap C) = \{2\} \cup \{2,5\} (A \cap B) \cup (A \cap C) = \{2, 5\} Hence A \cap (B \cup C) = (A \cap B) \cup (A \cap C) Proved Q5: If U = \{x \mid x \in N \land 1 \le x \le 40\}, A = \{1, 6, 11, 16, 21, 26, 31\} B = \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\} Then Verify De Morgan's laws for the following sets. Solution: De-Morgan's Law: U = \{x \mid x \in N \land 1 \le x \le 40\},\ U = \{1, 2, 3, 4 \dots 40\} A = \{1, 6, 11, 16, 21, 26, 31\} B = \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\} To Prove: (A \cup B)' = A' \cap B' L.H.S: (A \cup B)' First we find A \cup B: A \cup B = \{1, 6, 11, 16, 21, 26, 31\} \cup \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\} A \cup B = \{1, 2, 5, 6, 8, 11, 14, 16, 17, 20, 21, 26, 29, 31, 32\} (A \cup B)' = U \setminus (A \cup B) (A \cup B)' = \{1, 2, 3, 4, ..., 40\} \setminus \{1, 2, 5, 6, 8, 11, 14, 16, 17, 20, 21, 26, 29, 31, 32\} (A \cup B)' = \{3, 4, 7, 9, 10, 12, 13, 15, 18, 19, 22, 23, 24, 25, 27, 28, 30, 33, 34, ... 40\} R.H.S: A' \cap B' First we find A': A' = U \setminus A = \{1, 2, 3, 4, ..., 40\} \setminus \{1, 6, 11, 16, 21, 26, 31\} = \{2,3,4,5,7,8,9,10,12,13,14,15,17,18,19,20,22,23,24,25,27,28,29,30,32,33,34,\ldots,40\} And Also B' = B \setminus A = \{1, 2, 3, 4 \dots 40\} \setminus \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\} = \{1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,33,34,35,\ldots,40\} {1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,33,34,35,...,40} A' \cap B' = \{3,4,7,9,10,12,13,15,18,19,22,24,25,27,28,30,33,34,35,\dots,40\} Hence (A \cup B)' = A' \cap B' Proved ``` # Chapter #5 #### Review Ex # 5 # **De-Morgan's Law:** $U = \{x \mid x \in N \land 1 \le x \le 40\},\$ $U = \{1, 2, 3, 4 \dots 40\}$ $A = \{1, 6, 11, 16, 21, 26, 31\}$ $B = \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\}$ To Prove: $(A \cap B)' = A' \cup B'$ L.H.S: $(A \cap B)'$ First we find $A \cap B$: $A \cap B = \{1, 6, 11, 16, 21, 26, 31\} \cap \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\}$ $A \cap B = \{11, 26\}$ $(A \cap B)' = U \setminus (A \cap B)$ $(A \cap B)' = \{1, 2, 3, 4 \dots 40\} \setminus \{11, 26\}$ $(A \cap B)' = \{1, 2, 3, \dots 10, 12, 13, 14 \dots 25, 27, 28 \dots 40\}$ **R.H.S:** $A' \cup B'$ First we find A': $A' = U \setminus A$ $= \{1, 2, 3, 4 \dots 40\} \setminus \{1, 6, 11, 16, 21, 26, 31\}$ $= \{2,3,4,5,7,8,9,10,12,13,14,15,17,18,19,20,22,23,24,25,27,28,29,30,32,33,34,\ldots,40\}$ And Also $$B' = B \setminus A$$ $= \{1, 2, 3, 4, ..., 40\} \setminus \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32\}$ $= \{1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,33,34,35,\ldots,40\}$ Now $A' \cup B' = \{2,3,4,5,7,8,9,10,12,13,14,15,17,18,19,20,22,23,24,25,27,28,29,30,32,33,34,\dots,40\} \\ \cup \{1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,33,34,35,\dots,40\}$ $A' \cup B' = \{1, 2, 3, \dots 10, 12, 13, 14 \dots 25, 27, 28 \dots 40 \}$ Hence $(A \cap B)' = A' \cup B'$ Proved # Q5: If $U = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ Then verify De – Morgan's laws with the help of Venn diagrams. # De-Morgan's Law: $U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ To Prove: $(A \cup B)' = A' \cap B'$ **L.H.S:** $(A \cup B)'$ First we find $A \cup B$: $A \cup B = \{2, 5, 6\} \cup \{1, 2, 3\}$ $A \cup B = \{1, 2, 3, 5, 6\}$ Now $$(A \cup B)' = U \setminus (A \cup B)$$ $$(A \cup B)' = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3, 5, 6\}$$ $$(A \cup B)' = \{4, 7\}$$ ## Review Ex # 5 #### R.H.S: $A' \cap B'$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2, 5, 6\}$$ $$= \{1, 3, 4, 7\}$$ Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3\}$$ $$= \{4, 5, 6, 7\}$$ Now $$A' \cap B' = \{1, 3, 4, 7\} \cap \{4, 5, 6, 7\}$$ $$A' \cap B' = \{4, 7\}$$ Hence $$(A \cup B)' = A' \cap B'$$ Proved # De-Morgan's Law: $$U = \{1, 2, 3, 4, 5, 6, 7\}$$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 3\}$ To Prove: $$(A \cap B)' = A' \cup B'$$ # **L.H.S:** $(A \cap B)'$ First we find $A \cap B$: $$A \cap B = \{2, 5, 6\} \cap \{1, 2, 3\}$$ $$A \cap B = \{ 2 \}$$ $$(A \cap B)' = U \setminus (A \cap B)$$ $$(A \cap B)' = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2\}$$ $$(A \cap B)' = \{1, 3, 4, 5, 6, 7\}$$ # R.H.S: $A' \cup B'$ First we find A' $$A' = U \setminus A$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{2, 5, 6\}$$ $= \{1, 3, 4, 7\}$ # Review Ex # 5 Now find B' $$B' = U \setminus B$$ $$= \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 2, 3\}$$ $$= \{4, 5, 6, 7\}$$ Now $$A' \cup B' = \{1, 3, 4, 7\} \cup \{4, 5, 6, 7\}$$ $$A' \cup B' = \{1, 3, 4, 5, 6, 7\}$$ Hence $$(A \cap B)' = A' \cup B'$$ Proved Q6: If $$U = \{1,2,3,...,10\}, A = \{1,2,3,4\},$$ $B = \{3,4,5,6\}, C = \{3,4,7,8\}$ then verify distributive laws with help of Venn Diagram. # **Solution:** # **Distributive Property of Union over Intersection:** $$A = \{1,2,3,4\}, B = \{3,4,5,6\}, C = \{3,4,7,8\}$$ To Prove: $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ **L.H.S:** $A \cup (B \cap C)$ $$B \cap C = \{3,4,5,6\} \cap \{3,4,7,8\}$$ $$B \cap C = \{3,4\}$$ Now $$A \cup (B \cap C) = \{1,2,3,4\} \cup \{3,4\}$$ $$A \cup (B \cap C) = \{1,2,3,4\}$$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cup B$: $$A \cup B = \{1,2,3,4\} \cup \{3,4,5,6\}$$ $$A \cup B = \{1,2,3,4,5,6\}$$ Now $$A \cup C = \{1,2,3,4\} \cup \{3,4,7,8\}$$ $$A \cup C = \{1,2,3,4,7,8\}$$ # Chapter # 5 #### Review Ex # 5 Now $(A \cup B) \cap (A \cup C) = \{1,2,3,4,5,6\} \cap \{1,2,3,4,7,8\}$ $(A \cup B) \cap (A \cup C) = \{1,2,3,4\}$ Hence $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ Proved # **Distributive Property of Intersection over Union:** $$A = \{1,2,3,4\}, B = \{3,4,5,6\}, C = \{3,4,7,8\}$$ To Prove: $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ **L.H.S:** $A \cap (B \cup C)$ $$B \cup C = \{3,4,5,6\} \cup \{3,4,7,8\}$$ $$B \cup C = \{3, 4, 5, 6, 7, 8\}$$ Now $$A\cap(B\cup C)=\{1,2,3,4\}\cap\{3,4,5,6,7,8\}$$ $$A\cap (B\cup C)=\{3,4\}$$ **R.H.S:** $(A \cup B) \cap (A \cup C)$ First we find $A \cap B$: $$A \cap B = \{1,2,3,4\} \cap \{3,4,5,6\}$$ $$A \cap B = \{3, 4\}$$ Now we find $A \cap B$: $$A \cap C = \{1,2,3,4\} \cap \{3,4,7,8\}$$ $$A \cap C = \{3, 4\}$$ $$(A \cap B) \cup (A \cap C) = \{3, 4\} \cup \{3, 4\}$$ $$(A \cap B) \cup (A \cap C) = \{3, 4\}$$ Hence $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ Proved #### Review Ex # 5 - Q7: Let $A = \{-2, -1, 0, 1, 2\}, B = \{a, b, c, d, e\}.$ Determine which sets of ordered pair represent a function. In case of a function. mention one - one function, onto function and bijective function. - $\{(-2,a),(-1,a),(0,b),(1,c),(2,d)\}$ **Solution:** $$\{(-2,a),(-1,a),(0,b),(1,c),(2,d)\}$$ Let $$R = \{(-2, a), (-1, a), (0, b), (1, c), (2, d)\}$$ For function, Dom R = A $$Dom R = \{-2, -1, 0, 1, 2\} = A$$ And there is no repetition in Domain. Thus R is a function from $A \times B$ Now Range $R = \{a, b, c, d\} \neq B$ And also there is repetition in range Hence *R* is Onto function from A to B (ii) $\{(-1,a),(1,e),(-2,d),(0,c),(2,b)\}$ **Solution:** $$\{(-1,a),(1,e),(-2,d),(0,c),(2,b)\}$$ Let $$R = \{(-1, a), (1, e), (-2, d), (0, c), (2, b)\}$$ For function, Dom R = A $$Dom R = \{-2, -1, 0, 1, 2\} = A$$ And there is no repetition in Domain. Thus R is a function from $A \times B$ Now $$Range\ R = \{a, b, c, d, e\} = B$$ And there is no repetition in range Hence *R* is bijective function from A to B (iii) $\{(2,d),(0,a),(-2,b),(-1,c),(1,e)\}$ **Solution:** $$\{(2,d),(0,a),(-2,b),(-1,c),(1,e)\}$$ Let $$R = \{(2, d), (0, a), (-2, b), (-1, c), (1, e)\}$$ For function, Dom R = A $$Dom R = \{-2, -1, 0, 1, 2\} = A$$ And there is no repetition in Domain. Thus R is a function from $A \times B$ Now *Range* $$R = \{a, b, c, d, e\} = B$$ And there is no repetition in range Hence R is bijective function from A to B ## Review Ex # 5 (iv) $|\{(-2,b),(-1,b),(0,a),(1,d),(-2,e)\}|$ # **Solution:** $\{(-2,b),(-1,b),(0,a),(1,d),(-2,e)\}$ Let $R = \{(-2, b), (-1, b), (0, a), (1, d), (-2, e)\}$ For function, Dom R = A $Dom R = \{-2, -1, 0, 1\} \neq A$ Thus *R* is not a function because its $Dom R \neq A$. - Q8 Let $A = \{1, 2, 3, 4, 5\}$, check whether the following sets are functions on A. in case these are functions, indicate their ranges. Which function is onto. - (i) $\{(1,5),(2,3),(3,3),(4,2),(5,1)\}$ # **Solution**: $\{(1, 5), (2, 3), (3, 3), (4, 2), (5, 1)\}$ Let $R = \{(1, 5), (2, 3), (3, 3), (4, 2), (5, 1)\}$ For function, Dom R = A $Dom R = \{1, 2, 3, 4, 5\} = A$ And there
is no repetition in Domain. Thus R is a function from in A Now *Range* $R = \{1, 2, 3, 5\} \neq A$ Thus, it is not onto function. # (ii) $\{(1, 1), (2, 4), (3, 2), (4, 1), (5, 3)\}$ # **Solution**: $\{(1, 1), (2, 4), (3, 2), (4, 1), (5, 3)\}$ Let $R = \{(1, 1), (2, 4), (3, 2), (4, 1), (5, 3)\}$ For function, Dom R = A $Dom R = \{1, 2, 3, 4, 5\} = A$ And there is no repetition in Domain. Thus *R* is a function from in *A* Now *Range* $R = \{1, 2, 3, 4\} \neq A$ Thus, it is not onto function. # (iii) $\{(1,2),(2,1),(3,1),(4,4),(5,5)\}$ # **Solution:** $\{(1, 2), (2, 1), (3, 1), (4, 4), (5, 5)\}$ Let $R = \{(1, 2), (2, 1), (3, 1), (4, 4), (5, 5)\}$ For function, Dom R = A $Dom R = \{1, 2, 3, 4, 5\} = A$ #### Review Ex # 5 And there is no repetition in Domain. Thus *R* is a function from in *A* Now *Range* $R = \{1, 2, 4, 5\} \neq A$ Thus, it is not onto function. (iv) $\{(1,2),(2,3),(1,4),(3,5)\}$ # **Solution:** $\{(1, 2), (2, 3), (1, 4), (3, 5)\}$ Let $R = \{(1, 2), (2, 3), (1, 4), (3, 5)\}$ For function, Dom R = A $Dom R = \{1, 2, 3\} \neq A$ Thus R is not a function from in A - Q9: If $X = \{-6, -5, -4, -3\}$ and $Y = \{1, 2, 3, 4\}$ then write - (i) a one one function from X to Y. Solution $\overline{a \text{ one } - \text{ one}}$ function from X to Y. $$f = \{(-6, 1), (-5, 4), (-4, 3), (-3, 2)\}$$ For function, Dom f = X $$Dom f = \{-6, -5, -4, -3\} = X$$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ Now Range $f = \{1, 2, 3, 4\} = B$ And also no repetition in range Thus f is one – one function from X to Y (ii) Onto function from X to Y. # **Solution:** Onto function from X to Y. $f = \{(-6,1), (-5,4), (-4,3), (-3,2)\}$ For function, Dom f = X # Chapter # 5 # Review Ex # 5 $$Dom f = \{-6, -5, -4, -3\} = X$$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ Now *Range* $$f = \{1, 2, 3, 4\} = B$$ Thus *f* is Onto function from X to Y. # (iii) a one – one and onto function from X to Y. Solution: a one – one and onto function from \boldsymbol{X} to \boldsymbol{Y} $$f = \{(-6, 1), (-5, 4), (-4, 3), (-3, 2)\}$$ For function, $$Dom f = X$$ *Dom* $$f = \{-6, -5, -4, -3\} = X$$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ Now *Range* $$f = \{1, 2, 3, 4\} = B$$ And also no repetition in range Thus f is one – one and onto function from X to Y # a function from \boldsymbol{X} to \boldsymbol{Y} which is neither one — one nor onto. # **Solution:** a function from X to Y which is neither one – one nor onto. $$f = \{(-6, 2), (-5, 4), (-4, 3), (-3, 2)\}$$ For function, Dom f = X $$Dom f = \{-6, -5, -4, -3\} = X$$ And there is no repetition in Domain. Thus f is a function in $X \times Y$ Now *Range* $$f = \{2, 3, 4\} \neq B$$ And there is also repetition in range Hence f is a function from X to Y which is neither one — one nor onto. # **MATHEMATICS** Class 10th (KPK) Unit # 6 Basic Statistics | NAME: | | |------------------|--| | F.NAME: | | | CLASS: SECTION: | | | ROLL #: SUBJECT: | | | ADDRESS: | | | | | | SCHOOL: | | # **UNIT** # 6 # **BASIC STATISTICS** # Ex # 6.1 # Frequency The number of times a value appears on a set of data is called frequency. # **Data** It can be defined as a systematic record of a particular quantity. Data is a collection of facts and figures to be used for a specific purpose. # Ungrouped data The set of raw data is called ungrouped data. # Grouped data The data represented in the form of frequency distribution is called grouped data. # **Frequency Distribution** The frequency distribution table is a statistical method to organize and simplify a large set data into smaller groups. The main purpose of the grouped frequency table is to find out how often each value occurred within each group of the entire data. # **Construction of Frequency Table** There are wo types of grouped data. Discrete frequency data Continuous frequency data # **Construction of Discrete Frequency Table** Steps Find the minimum and maximum value in the data and write in values in the variable column from minimum to maximum. Record the values by using tally marks (vertical bars "|") Count the tally and write down in frequency column. #### Example # 1 In a shoe store 40 customers bought shoes with the following shoe size. 6, 6, 7, 6, 8, 7, 7, 8, 6, 10, 6, 8, 8, 10, 7, 9, 7, 10, 6, 10, 10, 9, 7, 9, 6, 10, 10, 7, 11, 8, 8, 7, 6, 6, 8, 9, 7, 8, 7, 9. Construct a frequency table # $\mathbf{Ex} # \mathbf{6.1}$ # **Solution:** Let X = shoe size | X | Tally Marks | Frequency (f) | |----|-------------|---------------| | 6 | | 9 | | 7 | | 10 | | 8 | | 8 | | 9 | | 4 | | 10 | | 8 | | 11 | | 1 | # **Construction of Continuous Frequency Table** Find Range: Deduct lowest value from highest value $(X_{max} - X_{min})$ Determine the number of groups (k). The groups between 5 to 15 groups. The groups depend upon the range. Larger the Range, more are the numbers of groups. Determine the width (h) by dividing the Range by number of groups. $$h = \frac{Range}{k}$$ Decide the upper and lower group data. All the groups should be formed accordingly. Create the columns titled such as Groups, Tally Marks, Frequency etc. Insert the data in the table. # **Important Concepts** # **Class Limit** The selected number which shows the start and end of a class is called class limit. The start is lower limit and the end is called upper class limit. # Mid – point/ Class Mark The midpoint of any class is known as mid – point. #### Note: For each class, the two limits may be fixed such that the midpoint of each class falls on an integer rather than a fraction. The formula to find the mid – point is $Mid-point = \frac{Lower Limit + Upper Limit}{}$ # **Unit # 6** # Ex # 6.1 # **Class Width** The difference between two consecutive lower-class or upper-class limits is called class width. It is also found by dividing the range by the number of groups formed. It is denoted by h. **Formula** $$h = \frac{Range}{k}$$ # **Class Boundaries** Following is the formula to find the Class Boundaries (C.B) Lower limit of 2nd Class – Upper limit of 1st Class The value from the above formula, it must be subtracted from the lower limits and added to the upper limits of every class # Example In this example, Class Boundaries are calculated like Lower limit of 2nd Class - Upper limit of 1st Class $$\frac{5-4}{2} = \frac{1}{2} = 0.5$$ Now 0.5 is subtracted from the lower limit and added to the upper limit of each class. | Class Limits | Class Boundaries | |--------------|------------------| | 1 - 4 | 0.5 - 4 - 5 | | 5 – 8 | 4.5 - 8.5 | | 9 – 12 | 8.5 - 12.5 | | 13 – 16 | 12.5 - 16.5 | | 17 - 20 | 16.5 - 20.5 | # Example # 2 The heights of 30 students of 10th class in cm are as follows. Construct group frequency. 162, 165, 170, 170, 162, 159, 162, 163, 175, 166, 171, 174, 155, 160, 173, 140, 145, 140, 146, 150, 172, 158, 155, 163, 165, 171, 153, 158, 149, 153 # **Solution:** Minimum value = 140 Maximum value = 175 $Range = maximum \ value - minimum \ value$ Range = 175 - 140 Range = 35 # Ex # 6.1 Let we take the 7 groups Now $$Class\ width = \frac{Range}{No.\ of\ groups}$$ Class width = $\frac{35}{7}$ $Class\ width = 5$ | Groups | Class | Heights (cm) | Frequency | |-----------|------------------------------|----------------|------------| | | Boundaries | | (f) | | 139 - 144 | 138.5 - 144.5 | 140, 140 | 2 | | 145 - 150 | 144.5 - 150.5 | 146, 150, 149, | 4 | | | | 145 | | | 151 – 156 | 151.1 – 156.5 | 155, 155, 153, | 4 | | | | 153 | | | 157 - 162 | 156.5 - 162.5 | 158, 158, 159, | 7 | | | | 160, 162, 162, | | | | | 162 | | | 163 - 168 | 162.5 - 168.5 | 163, 163, 165, | 5 | | | | 165, 166 | | | 169 - 174 | 16 <mark>8</mark> .5 – 174.5 | 170, 170, 171, | 7 | | | | 171, 172, 173, | | | | | 174 | | | 175 - 180 | 174.5 — 180.5 | 175 | 1 | # Example #3 Construct a frequency table of the weights (kg) of 30 students are the following data by using 5 as a class interval. Find the class boundaries and class marks also. 25, 30, 40, 21, 24, 25, 36, 30, 45, 50, 22, 25, 36, 46, 35, 38, 40, 28, 34, 45, 42, 46, 38, 48, 28, 29, 31, 33, 30, 26 #### **Solution:** | Groups | Tally | Frequency | uency Class | | |---------|-------|------------|-------------|-------| | | Marks | (f) | Boundaries | marks | | 21 - 25 | Ш | 6 | 20.5 - 25.5 | 23 | | 26 - 30 | HH 11 | 7 | 25.5 - 30.5 | 28 | | 31 – 35 | | 4 | 30.5 - 35.5 | 33 | | 36 - 40 | H1 I | 6 | 35.5 - 40.5 | 38 | | 41 - 45 | | 3 | 40.5 - 45.5 | 43 | | 46 - 50 | | 4 | 45.5 - 50.5 | 48 | #### Histogram A histogram is a vertical bar graph with no space between the bars. The area of each bar is proportional to the frequency it represents. # Advantage A histogram has advantages over the other methods that it can used to represent data with both equal and unequal class intervals. # Ex # 6.1 #### Note We have to make the class boundaries to avoid gaps between the bars. # **Steps** Class Boundaries or values of variable should be taken along X – axis. Frequencies should be taken along Y - axis. The height/ area of the bar/ rectangle measures the frequency. # Example # 4 Construct a Histogram from the following table. | Class | 20 | 30 | 40 | 50 | 60 | |--------|-------------|------|-------------|-------------|------| | limits | – 29 | - 39 | - 49 | – 59 | - 69 | | F | 1 | 2 | 3 | 2 | 1 | # **Solution:** To draw a histogram class boundaries are marked along X – axis and frequencies of each class are marked along Y – axis. | Class limits | Frequency | Class Boundaries | |--------------|-----------|------------------| | 20 - 29 | 1 | 19.5 - 29.5 | | 30 - 39 | 2 | 29.5 - 39.5 | | 40 – 49 | 3 | 39.5 - 49.5 | | 50 - 59 | 2 | 59.5 - 59.5 | | 60 - 69 | 1 | 59.5 - 69.5 | # Histogram from Equal Intervals # **Unit # 6** # Ex # 6.1 # Example # 5 Draw a histogram for the following data. | Class | 30 | 40 | 44 | 55 | 70 | 80 | 90 | |--------|------|------------|-------------|------|-------------|-------------|-------------| | limits | - 39 | -43 |
- 54 | - 69 | - 79 | - 89 | - 99 | | F | 10 | 12 | 44 | 75 | 40 | 30 | 10 | # **Solution:** Histogram with unequal class intervals. The class intervals are not equal. In constructing the histogram, we must ensure that the area of rectangle are proportional to class frequencies, as the frequency in a histogram is represented by the area of each rectangle. | | | | mistogram is represented to the area of each rectangl | | | | | | |-------------|--------------------|-----------|---|----------------|--|--|--|--| | Class | Class | Class | Frequency | Adjusted | | | | | | limits | Boundaries | intervals | | frequency | | | | | | | | (h) | | f | | | | | | | | | | \overline{h} | | | | | | 30 | 29.5 | 10 | 10 | 1 | | | | | | - 39 | – 39.5 | | | | | | | | | 40 | 39.5 | 4 | 12 | 3 | | | | | | - 43 | -43.5 | | | | | | | | | 44 | 43.5 | 11 | 44 | 4 | | | | | | – 54 | - 54.5 | | | | | | | | | 55 | 54.5 | 15 | 75 | 5 | | | | | | - 69 | - 69.5 | | | | | | | | | 70 | 69.5 | 10 | 40 | 4 | | | | | | – 79 | - 79.5 | | | | | | | | | 80 | <mark>7</mark> 9.5 | 10 | 30 | 3 | | | | | | - 89 | - 89.5 | | | | | | | | | 90 | 89.5 | 10 | 10 | 1 | | | | | | – 99 | – 99.5 | | | | | | | | | | | | | | | | | | # Unit#6 # Ex # 6.1 # **Frequency Polygon** A frequency polygon is drawn by joining all the midpoints at the top of each rectangle. The midpoints at both ends are joined to the horizontal axis to accommodate the end points of the polygon. We can draw the frequency polygon of a distribution without first drawing the histogram. Frequency polygon are specially useful to compare two sets of data. # Example # 6 Draw a frequency polygon for the following frequency distribution. | Class
limits | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 – 69 | 70 – 79 | 80 – 89 | |-----------------|---------|---------|---------|---------|---------|---------|---------| | Frequency | 1 | 3 | 4 | 5 | 4 | 2 | 1 | # **Solution:** | Class limits | Frequency | Class Boundaries | Class Marks (Mid – Point)X | |--------------|-----------|------------------|----------------------------| | 20 - 29 | 1 | 19.5 – 29.5 | 24.5 | | 30 - 39 | 3 | 29.5 – 39.5 | 34.5 | | 40 - 49 | 4 | 39.5 - 49.5 | 44.5 | | 50 - 59 | 5 | 59.5 - 59.5 | 54.5 | | 60 - 69 | 4 | 59.5 – 69.5 | 64.5 | | 70 – 79 | 2 | 69.5 - 79.5 | 74.5 | | 80 – 89 | 1 | 79.5 – 89.5 | 84.5 | # **Unit # 6** # Ex # 6.1 # Page # 175 - Q1: Construct a frequency distribution of the marks of 30 students during a quiz with 100 points by taking 10 as the class interval. Indicate the class boundaries and class marks. - 40, 60, 65, 70, 35, 50, 56, 74, 72, 49, 85, 76, 82, 83, 68, 90, 67, 66, 58, 46, 74, 88, 76, 69, 57, 63, 66, 47, 82, # Solution: Minimum value = 35 Maximum value = 90 $Range = maximum \ value - minimum \ value$ Range = 90 - 35 Range = 55 As Class Interval is 10. Now Now $$Class\ width = \frac{Range}{No.\ of\ groups}$$ $$No.\ of\ groups = \frac{Range}{Class\ width}$$ $$No.\ of\ groups = \frac{55}{10}$$ No. of groups = $$\frac{Range}{\underline{Class\ width}}$$ | No.01 groups = | $5.5 \equiv 0$ | | | | |----------------|----------------|-----------------|-------------|---------------------| | Class limits | Class | Class marks | Tally Marks | Frequency | | | Boundaries | | | | | 35 - 44 | 34.5 - 44.5 | 40, 35 | | 2 | | 45 – 54 | 44.5 - 54.5 | 50, 49, 46, 47 | | 4 | | 55 – 64 | 54.5 - 64.5 | 60, 56, 58, 57, | IH . | 5 | | 55 01 | 31.3 01.5 | 63 | O''T | | | | | 65, 70, 74, 72, | | \rightarrow () (| | 65 - 74 | 64.5 - 74.5 | 67, 66, 74, 66, | | 10 | | | | 68, 69 | | | | 75 – 84 | 74.5 – 84.5 | 76, 82, 83, 76, | IH | 5 | | 73 - 04 | 74.5 - 04.5 | 82 | ИП | 3 | | 85 - 94 | 84.5 – 94.5 | 85, 90, 88, 90 | | 4 | | | | | | $\sum f = 30$ | - Following are mistakes made by a group of students of class 10th in a test of easy writing. Using an Q2: appropriate size of class interval, make a frequency distribution and also indicate the number of class intervals. - 4, 7, 12, 9, 21, 16, 3, 19, 17, 24, 14, 15, 8, 13, 11, 16, 15, 6, 5, 8, 11, 20, 18, 22, 6 # **Solution:** $Minimum\ Value = 3$ $Maximum\ value = 24$ Range = 24 - 3 Range = 21 $Class\,Size=3$ Class interval = $$\frac{24-3}{3} = \frac{21}{3}$$ $Class\ interval = 7$ https://tehkals.com # **Unit # 6** | | Ex | # | 6.1 | | |--|----|---|-----|--| |--|----|---|-----|--| | Class Interval | Mistakes | Frequency | |----------------|--------------------|---------------| | 3 – 5 | 4, 3, 5 | 3 | | 6 – 8 | 7, 8, 6, 8, 6 | 5 | | 9 – 11 | 9, 11, 11 | 3 | | 12 – 14 | 12, 14, 13 | 3 | | 15 – 17 | 16, 17, 15, 16, 15 | 5 | | 18 – 20 | 19, 20, 18 | 3 | | 22 – 24 | 21, 24, 22 | 3 | | | | $\sum f = 25$ | # Q3: Draw a Histogram for the following data. | Class | 20 - 24 | 25 – 29 | 30 - 34 | 35 - 39 | 40 - 44 | 45 – 49 | 50 - 54 | |-----------|---------|---------|---------|---------|---------|---------|---------| | Limit | | | | | | | | | Frequency | 1 | 3 | 4 | 5 | 4 | 2 | 1 | # **Solution:** | Class Interval | Frequency | Class Boundaries | |----------------|-----------|------------------------| | 20 - 24 | 1 | 19.5 - 24.5 | | 25 – 29 | 3 | 24.5 - 29.5 | | 30 - 34 | 4 | 29.5 – 34.5 | | 35 - 39 | 5 | 34.5 - 39.5 | | 40 - 44 | 4 | 39.5 – 44.5 | | 45 – 49 | 2 | 44.5 – 49.5 | | 50 - 54 | 1 | 49.5 – 54.5 | Q4: The following data give the weights in (kg) of the students in the 10th class. 25, 30, 32, 29, 24, 40, 36, 37, 28, 27, 41, 42, 35, 39, 31, 32, 34, 42, 40, 43, 36, 26, 22, 23, 42, 39, 35, 41, 39, 29 Prepare a frequency distribution using a suitable class interval. Draw histogram and frequency polygon. # **Unit # 6** # Ex # 6.1 # **Solution**: $Minimum\ Value=22$ $Maximum\ value = 43$ Range = 43 - 22 Range = 21 $Class\,Size = 5$ $Class\ interval = \frac{Range}{5} = \frac{21}{5}$ Class interval = $4.2 \approx 4$ | Class limits | Class Boundaries | Mid-point | Weights | Frequency | |--------------|------------------|-----------|-------------------------|-----------| | 20 - 24 | 19.5 - 24.5 | 22 | 24, 22, 23 | 3 | | 25 – 29 | 24.5 - 29.5 | 27 | 25, 29, 28, 27, 26, 29 | 6 | | 30 - 34 | 29.5 - 34.5 | 32 | 30, 32, 31, 32, 34, 35 | 6 | | 35 – 39 | 34.5 - 39.5 | 37 | 36, 37, 35, 39, 36, 39, | 7 | | | | | 39 | | | 40 - 44 | 39.5 - 44.5 | 42 | 40, 41, 42, 42, 40, 43, | 8 | | | | | 42, 41 | | # Ex # 6.1 A teacher asked students about their time spent on homework completion. Following set of data as obtained. 4, 4, 6, 3, 1, 2, 2, 3, 1, 4, 1, 2, 5, 3, 4, 5, 2, 2, 3, 1, 3, 1, 2, 2, 3, 1, 4, 2, 6, 2 Construct a frequency table and draw histogram showing the results. # **Solution:** | 1 | <u> 501011011</u> : | | | | |---|---------------------|---------------------|--|----| | | Class
Limits | Class
Boundaries | Tally | f | | | 1 – 2 | 0.5 – 2.5 | 1, 1, 1, 1,
1, 1, 2, 2,
2, 2, 2, 2,
2, 2, 2 | 15 | | | 3 – 4 | 2.5 – 4.5 | 3, 3, 3, 3,
3, 3, 4, 4,
4, 4, 4, 4 | 11 | | | 5 – 6 | 4.5 - 6.5 | 5, 5, 6, 6 | 4 | | 1 | | | | | # **Cumulative Frequency** A cumulative frequency table provides information about the sum of a variable against the other values. When the same data is presented on a graph paper the freehand curve formed is called an Ogive. # Example # 7 Find the cumulative frequency table | Tind the cumulative frequency table. | | | | | | | | | | | |--------------------------------------|---|---|---|---|---|---|---|----|----|----| | X | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | F | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 4 | 3 | 8 | # Ex # 6.2 ## **Solution:** Cumulative frequency table | X | F | Method of finding | C.F | |----|---|-------------------|-----| | | | C.F | | | 3 | 1 | 1 | 1 | | 4 | 2 | 1 + 2 = 3 | 3 | | 5 | 3 | 3 + 3 = 6 | 6 | | 6 | 4 | 4 + 6 = 10 | 10 | | 7 | 5 | 5 + 10 = 15 | 15 | | 8 | 6 | 6 + 15 = 21 | 21 | | 9 | 7 | 7 + 21 = 28 | 28 | | 10 | 4 | 4 + 28 = 32 | 32 | | 11 | 3 | 3 + 32 = 35 | 35 | | 12 | 8 | 8 + 35 = 43 | 43 | # Example #8 The consumption of petrol of 1000CC cars of a particular brand was surveyed. Construct a cumulative frequency distribution. | | , 6 11 6 9 62 | errej erret | 100000000000000000000000000000000000000 | | | |-------------|---------------|-------------|---|------|------| | Distance | 10 | 13 | 16 | 19 | 22 | | km | – 12 | - 15 | - 18 | - 21 | - 24 | | F | 16 | 20 | 36 | 21 | 7 | # **Solution:** Cumulative frequency distribution | Mileage | Class
Boundaries | Upper
Class | F | C.F | |---------|---------------------|----------------|----|-----| | | | Boundaries | | | | 10-12 | 9.5-12.5 | 12.5 | 16 | 16 | | 13-15 | 12.5-15.5 | 15.5 | 20 | 36 | | 16-18 | 15.5-18.5 | 18.5 | 36 | 72 | | 19-21 | 18.5-21.5 | 21.5 | 21 | 93 | | 22-24 | 21.5-24.5 | 24.5 | 7 | 100 | #### **Cumulative Frequency Polygon** A polygon in which cumulative frequencies are used for ploting the curve is called cumulative frequency polygon. The curve is also called an Ogive. # Example #9 Marks of students are given during first pre – Board exam of mathematics 25, 30, 27, 28, 35, 36, 40, 41, 42, 45, 50, 44, 29, 26, 36, 31, 43, 46, 52, 53, 51, 42, 37, 27, 33, 46, 44, 34, 51, 54 By taking suitable class interval, prepare a frequency distribution, draw ogive. Ex # 6.2 # Solution: | Class limits | Class Boundaries | F | C.F | |--------------|------------------|---|-----| | 25 - 29 | 24.5 - 29.5 | 6 | 6 | | 30 - 34 | 29.5 - 34.5 | 4 | 10 | | 35 - 39 | 34.5 - 39.5 | 4 | 14 | | 40 - 44 | 39.5 - 44.5 | 7 | 21 | | 45 – 49 | 44.5 - 49.5 | 3 | 24 | | 50 - 54 | 49.5 - 54.5 | 6 | 30 | # Ex # 6.2 # Pages # 132 Q1: The following data give the wages (in Rs.) of workers. 60,75,80,85,90,84,70,73,76,84,95,100,150,66, 58,90,98,120,77,90. By taking 10 as a class interval, prepare. Cumulative frequency distribution. Cumulative frequency polygon. #### **Solution:** **Cumulative frequency polygon** | Class |
Class | Wages | f | C.f | |-----------|-------------|----------|---|-----| | Intervals | Boundaries | | | | | 55-64 | 54.5-64.5 | 60, 58 | 2 | 2 | | 65-74 | 64.5-74.5 | 66, 70, | 3 | 5 | | | | 73 | | | | 75-84 | 74.5-84.5 | 76, 77, | 6 | 11 | | | | 75, 80, | | | | | | 84, 84 | | | | 85-94 | 84.5-94.5 | 85, 90, | 4 | 15 | | | | 90, 90 | | | | 95-104 | 94.5-104.5 | 95, 100, | 3 | 18 | | | | 98 | | | | 105-114 | 104.5-114.5 | | 0 | 18 | | 115-124 | 114.5-124.5 | 120 | 1 | 19 | | 125-134 | 124.5-134.5 | | 0 | 19 | | 135-144 | 134.5-144.5 | | 0 | 19 | | 145-154 | 144.5-154.5 | 150 | 1 | 20 | # Ex # 6.2 Cumulative frequency polygon 20 15 16 14 12 10 5 6 4 2 0 64.5 74.5 84.5 94.5 104.5 114.5 124.5 134.5 144.5 154.5 Q2: Make cumulative frequency table for the following data. | Age | 20- | | 30–
34 | | | | | | |-----|-----|----|-----------|----|----|----|----|----| | | 24 | 29 | 34 | 39 | | | 54 | 39 | | No. | 1 | 2 | 16 | 10 | 22 | 20 | 15 | 14 | # **Solution:** **Unit # 6** | Age | Class | Upper | f | C.f | |-------|------------|------------|----|-----| | | Boundaries | Class | | | | | | Boundaries | | | | 20–24 | 19.5–24.5 | 24.5 | 1 | 1 | | 25–29 | 24.5–29.5 | 29.5 | 2 | 3 | | 30–34 | 29.5-34.5 | 34.5 | 16 | 19 | | 35–39 | 34.5–39.5 | 39.5 | 10 | 29 | | 40–44 | 39.5-44.5 | 44.5 | 22 | 51 | | 45-49 | 44.5–49.5 | 49.5 | 20 | 71 | | 50-54 | 49.5–54.5 | 54.5 | 15 | 86 | | 55–59 | 54.5-59.5 | 59.5 | 14 | 100 | Q3: In a city during the first week of August rainfall recorded is as | ionows. Construct a cumulative frequency graph | | | | | | | | |--|-----|-----|-----|-----|------|-----|-----| | Day | Sun | Mon | Tue | Wed | Thur | Fri | Sat | | Rainfall | 70 | 40 | 30 | 35 | 50 | 55 | 80 | | in ml | | | | | | | | # **Solution:** | Day | Rainfall | Cumulative | |-----------|----------|------------| | | in ml | frequency | | Sunday | 70 | 70 | | Monday | 40 | 70+40=110 | | Tuesday | 30 | 110+30=140 | | Wednesday | 35 | 140+35=175 | | Thursday | 50 | 175+50=225 | | Friday | 55 | 225+50=280 | | Saturday | 80 | 280+80=360 | # Q4: Draw less than and more than cumulative frequency polygon for the given data. | Marks | Number of Students | |---------|--------------------| | 40 - 49 | 1 | | 50 - 59 | 2 | | 60 - 69 | 3 | | 70 – 79 | 4 | | 80 – 89 | 5 | | 90 – 99 | 6 | ## **Solution:** | Solution. | | | | | |-----------|-------------|------------|---|-----| | Marks | Class | Upper | f | C.f | | | Boundaries | Class | | | | | | Boundaries | | | | 40 - 49 | 39.5 – 49.5 | 49.5 | 1 | 1 | | 50 - 59 | 49.5 - 59.5 | 59.5 | 2 | 3 | | 60 – 69 | 59.5 – 69.5 | 69.5 | 3 | 6 | | 70 – 79 | 69.5 – 79.5 | 79.5 | 4 | 10 | | 80 - 89 | 79.5 – 89.5 | 89.5 | 5 | 15 | | 90 – 99 | 89.5 – 99.5 | 99.5 | 6 | 21 | # **Unit # 6** Ex # 6.2 Q5: Determine from the data of Q4, the following | Marks | Class | Upper | f | C.f | |---------|-------------|------------|---|-----| | | Boundaries | Class | | | | | | Boundaries | | | | 40 - 49 | 39.5 – 49.5 | 49.5 | 1 | 1 | | 50 - 59 | 49.5 – 59.5 | 59.5 | 2 | 3 | | 60 - 69 | 59.5 – 69.5 | 69.5 | 3 | 6 | | 70 - 79 | 69.5 - 79.5 | 79.5 | 4 | 10 | | 80 - 89 | 79.5 – 89.5 | 89.5 | 5 | 15 | | 90 – 99 | 89.5 – 99.5 | 99.5 | 6 | 21 | # (i) Number of students who obtained more than 50 marks The students who obtained more than 50 marks are 20. # **Explanation** The students who obtained more than 50 marks are 2, 3, 4, 5, 6 Now add the number of students which are 20. # (ii) Number of students who obtained less than 70 marks The students who obtained less than 70 marks are 6 **Explanation** The students who obtained less than 70 marks are 1, 2, 3 Now add the number of students which are 6 # (iii) Number of students who secured marks between 50 and 70 The students who secured marks between 50 and 70 ## **Explanation** The students who secured marks between 50 and 70 are 2, 3 Now add the number of students which are 5 # (iv) | Class interval of all classes Class interval of all classes is 10. # (v) Lower class boundary of 5th class Lower class boundary of 5th class is 79.5 # **Unit # 6** Ex # 6.2**O6** Construct an Ogive for the following table. | Salary Groups | Workers | |---------------|---------| | 4000-5000 | 3 | | 5001-6000 | 5 | | 6001-7000 | 12 | | 7001-8000 | 9 | | 8001-9000 | 5 | | 9001-10000 | 4 | | 10001-11000 | 2 | | α | | | | |----------|------|-----|---| | Sol | 1111 | Λn | • | | SU | uu | VII | • | | Salary | Class Boundaries | F | C. | |-------------|------------------|----|----| | Groups | | | f | | 4000-5000 | 3999.5-5000.5 | 3 | 3 | | 5001-6000 | 5000.5-6000.5 | 5 | 8 | | 6001-7000 | 6000.5-7000.5 | 12 | 20 | | 7001-8000 | 7000.5-8000.5 | 9 | 29 | | 8001-9000 | 8000.5-9000.5 | 5 | 34 | | 9001-10000 | 9000.5-10000.5 | 4 | 38 | | 10001-11000 | 10000.5-11000.5 | 2 | 40 | # Ex # 6.3 # **Measure of central Tendency** Central Tendency of a data is the representation the whole data or the stage at which the largest number of item tends to concentrate and so it is called central tendency. Central Tendency or Averages are also sometimes called measures of location, because they locate the centre of a distribution. # **Types of Centra Tendency Averages** - Arithmetic Mean (A.M) (i) - (ii) Median - (iii Mode - Geometric Mean (G.M) (iv - Harmonic Mean (H.M) (v) (iv Quartiles # Ex # 6.3 # **Arithmetic Mean for Ungroup Data** Arithmetic Mean is calculated by adding all values of the data divided by the number of items (values). Denoted by Arithmetic Mean or A.M or Mean or $$\overline{X}$$ Arithmetic Mean = $\frac{Sum\ of\ Quantities}{Number\ of\ Quantities}$ $\overline{X} = \frac{x_1 + x_2 + x_3 + x_4 + \dots + x_n}{n}$ OR OR Arithmetic Mean = $$\frac{\sum X}{n}$$ $\Sigma = Sigma (Used for Summation)$ n = Total number of items in the data. By Short – cut Method $$\overline{X} = a + \frac{\sum D}{n}$$ Where a = Provisional Mean / Assume Mean D = X - a (Deviation from provisional mean) Exp # 10(i) Find A.M of 2, 3, 4, 5, 6, 7, 8, 9, 10 Solution: $$\nabla = \sum_{X} X$$ $$\overline{X} = \frac{\overline{x}}{n}$$ $$\overline{X} = \frac{2+3+4+5+6+7+8+9+10}{9}$$ $$\overline{Y} = \frac{54}{n} = 6$$ Exp10(ii) Find A.M of 2, 3, 4, 5, 6, 7, 8, 9, 10 by shortcut method. # **Solution:** Let assumed mean=2 | X | D = X - a | |---------------|---------------| | 2 | 2 - 2 = 0 | | 3 | 3 - 2 = 1 | | 4 | 4 - 2 = 2 | | 5 | 5 - 2 = 3 | | 6 | 6 - 2 = 4 | | 7 | 7 - 2 = 5 | | 8 | 8 - 2 = 6 | | 9 | 9 - 2 = 7 | | 10 | 10 - 2 = 8 | | $\sum X = 54$ | $\sum D = 36$ | $$\overline{X} = a + \frac{\sum D}{n}$$ Put the values $$\overline{X} = 2 + \frac{36}{9}$$ $$X = 2 + 4 = 6$$ $$\overline{X} = \frac{\sum fX}{\sum f}$$ **Arithmetic Mean for Group Data by Short cut Method** $$\overline{X} = a + \frac{\sum fD}{\sum f}$$ # Example # 11 In a coaching class of 13 students, a test conducted, and marks obtained are 10, 12, 12, 14, 9, 18, 9, 13, 16, 9, 17, 16, 14. Make frequency table and find arithmetic mean. # **Solution:** | Solution | | | |----------|---------------|-----------------| | X | f | fX | | 9 | 3 | 27 | | 10 | 1 | 10 | | 12 | 2 | 24 | | 13 | 1 | 13 | | 14 | 2 | 28 | | 16 | 2 | 32 | | 17 | 1 | 17 | | 18 | 1 | 18 | | | $\sum f = 13$ | $\sum fX = 169$ | | | | | As we have $$\overline{X} = \frac{\sum fX}{\sum f}$$ Put the values $$\overline{X} = \frac{169}{13}$$ $$\overline{X} = 13$$ # **Example # 12(i)** The price of 2kw generators are given below along frequencies. Find mean by Direct method. | ir equencies. Find mean by Direct method. | | | | | | | | | | |---|-----|-----|------|------|------|------|------|--|--| | Price | 90- | 95- | 100- | 105- | 110- | 115- | 120- | | | | | 94 | 99 | 104 | 109 | 114 | 119 | 124 | | | | f | 4 | 11 | 15 | 24 | 18 | 9 | 3 | | | # **Solution:** #### By Direct Method | Class | F | Mid point | fX | |-----------|---------------|-----------|------------------| | interval | | (X) | | | 90 – 94 | 4 | 92 | 368 | | 95 – 99 | 11 | 97 | 1067 | | 100 - 104 | 15 | 102 | 1530 | | 105 – 109 | 24 | 107 | 2568 | | 110 - 114 | 18 | 112 | 2016 | | 115 – 119 | 9 | 117 | 1053 | | 120 - 124 | 3 | 122 | 366 | | | $\sum f = 85$ | | $\sum fX = 8968$ | # **Unit # 6** # Ex # 6.3 As we have $$\overline{X} = \frac{\sum fX}{\sum f}$$ Put the values $$\overline{X} = \frac{8968}{85}$$ $$\bar{X} = 105.5$$ # Example # 12(ii) The price of 2kw generators are given below along frequencies. Find mean by Direct method. | | | | | <i>y</i> = == == == == == == == == == = == = | | | | | |-------|-----|-----|------|--|------|------|------|--| | Price | 90- | 95- | 100- | 105- | 110- | 115- | 120- | | | | 94 | 99 | 104 | 109 | 114 | 119 | 124 | | | f | 4 | 11 | 15 | 24 | 18 | 9 | 3 | | # **Solution:** By Short cut Method Let assumed mean=92 | Class | F | Mid | D = X - a | FD | |-----------|---------------|-------|---------------|------------------| | interval | | point | | | | | | (X) | | | | 90 - 94 | 4 | 92 | 92 - 92 = 0 | 0 | | 95 – 99 | 11 | 97 | 97 - 92 = 5 | 55 | | 100 – 104 | 15 | 102 | 102 - 92 = 10 | 150 | | 105 - 109 | 24 | 107 | 107 - 92 = 15 | 360 | | 110 - 114 | 18 | 112 | 112 - 92 = 20 | 360 | | 115 – 119 | 9 | 117 | 117 - 92 = 25 | 225 | | 120 - 124 | 3 | 122 | 122 - 92 = 30 | 90 | | Ω | $\sum f = 85$ | | 00 | $\sum fD = 1240$ | $$\overline{X} = a + \frac{\sum fD}{\sum f}$$ $$\overline{X} = 92 + \frac{1240}{85}$$ $$\overline{X} = 92 + 14.58$$ $$\overline{X} = 106.58$$ #### Median Median is a value which is in the center of observation when all the observations are arranged in ascending or descending order. i.e. Median divide the data in two equal parts. # **Median for Ungroup Data** First the data should be ascending or descending order # For Odd number of quantities $$Median = \left(\frac{n+1}{2}\right)th \ value$$ Where n is number of quantities # For Even number of quantities $$Median = \frac{1}{2} \left(\frac{n}{2} th + \frac{n+2}{2} th \right) value$$ # **Solution**: 2, 4, 5, 6, 3 First arrange the data. 2,
3, 4, 5, 6 As number of quantities=5 So n=odd number As we have $$Median = \left(\frac{n+1}{2}\right)th \ value$$ $$Median = \left(\frac{5+1}{2}\right)th \ value$$ $$Median = \left(\frac{6}{2}\right) th \ value$$ $Median = 3rd \ value$ So Median = 4 # Example # 14 The following is the daily pocket money in rupees for children of a family 10, 20, 15, 30. Calculate Median. # **Solution:** 10, 20, 15, 30 First arrange the data. 10, 15, 20, 30 As number of quantities=4 So n=Even number As we have $$Median = \frac{1}{2} \left(\frac{n}{2} th + \frac{n+2}{2} th \right) value$$ $$Median = \frac{1}{2} \left(\frac{4}{2} th + \frac{4+2}{2} th \right) value$$ $$Median = \frac{1}{2} \left(\frac{4}{2}th + \frac{4+2}{2}th \right) value$$ $Median = \frac{1}{2}(2nd + 3rd)value$ Sc $$Median = \frac{1}{2}(15 + 20)$$ $$Median = \frac{1}{2}(35)$$ $$Median = 17.5$$ # **Unit # 6** # Ex # 6.3 # **Median for Group data (Discrete Data)** Make the cumulative frequency column. Find out the median value in cumulative frequency column by $\left(\frac{n}{2}\right)$ th value Where n is cumulative frequency # Example # 15 The following are the marks obtained by 35 students in a test.. | X | 10 | 12 | 15 | 20 | 25 | 30 | |---|----|----|----|----|----|----| | F | 1 | 10 | 5 | 13 | 2 | 4 | # **Solution:** Here n=35 So n=odd number Now $$Median = \left(\frac{n+1}{2}\right)th \ value$$ $$Median = \left(\frac{35+1}{2}\right)th\ value$$ $$Median = \left(\frac{36}{2}\right) th \ value$$ $Median = 18th \ value$ See 18 in Cumulative frequency column Median = 20 # Example # 16: Find median marks from | Marks | 10 | 20 | 22 | 25 | |-----------------|----|----|----|----| | No. of students | 0 | 2 | 4 | 6 | #### Solution | | - | | |----|---------------|-----| | X | f | C.f | | 10 | 0 | 0 | | 20 | 2 | 2 | | 22 | 4 | 6 | | 25 | 6 | 12 | Here n=12 So n=Even number Now $$Median = \left(\frac{n}{2}\right) th \ value$$ $$Median = \left(\frac{12}{2}\right) th \ value$$ Median = 6 th value See 6 in Cumulative frequency column S_{2} Median = 22 # **Unit # 6** # Ex # 6.3 ## Example # 17 # Find Median of the following distribution | Wages | 60- | 70- | 80- | 90- | 100- | |--------|-----|-----|-----|-----|------| | | 69 | 79 | 89 | 99 | 109 | | Labour | 4 | 6 | 8 | 10 | 15 | # **Solution:** | Wages | Class Boundaries | f | C.f | |-----------|------------------|----|-----| | 60 – 69 | 59.5 – 69.5 | 4 | 4 | | 70 – 79 | 69.5 – 79.5 | 6 | 10 | | 80 – 89 | 79.5 – 89.5 | 8 | 18 | | 90 – 99 | 89.5 – 99.5 | 10 | 28 | | 100 – 109 | 99.5 – 109.5 | 5 | 33 | First we find median class Here n=33 Now $$Median = \left(\frac{n}{2}\right) th \ value$$ $$Median = \left(\frac{33}{2}\right) th \ value$$ $$Median = 16.5 th value$$ See 16.5 in Cumulative frequency column $$Median = L + \frac{h}{f} \left(\frac{n}{2} - C \right)$$ Here $$L = 79.5$$ $$h = 10$$ $$f = 8$$ $$C = 10$$ $$n = 33$$ Put the values Median = $$79.5 + \frac{10}{8} \left(\frac{33}{2} - 10 \right)$$ Median = $79.5 + 1.25(16.5 - 10)$ Median = $79.5 + 1.25(6.5)$ Median = $79.5 + 8.125$ $$Median = 87.625$$ # Mode for ungroup data The value that appears more times in a data is called mode The most repeated or frequent value in a data. # Ex # 6.3 Example # 18 From the following sizes of kids trousers, find the model size 25, 30, 31, 25, 35, 25 **Solution:** As the most repeated value is 25 Mode=25 Example # 19 The following data shows the weights of the students. Find the model weight. | | | | 8 | | | |----------|----|----|----|----|----| | Weight | 40 | 42 | 50 | 51 | 55 | | Students | 10 | 8 | 3 | 2 | 1 | | Salution | | | | | | Solution: | | Weight | 40 | 42 | 50 | 51 | 55 | |--|----------|----|----|----|----|----| | | Students | 10 | 8 | 3 | 2 | 1 | As the highest frequency is 10 So the weight of highest frequency is 40 Thus Mode=40 # **Mode of Group Data (Continuous Data)** $$Mode = l + \frac{f_m - f_0}{(f_m - f_0) + (f_m - f_1)} \times h$$ Or Mode = $$l + \frac{f_m - f_0}{2f_m - f_0 - f_1} \times h$$ L=Lower Class boundary of model class h=width of class interval $f_m = Heighest Frequency$ $f_0 = Frequency\ before\ Model\ Class$ $f_1 = Frequency after Model Class$ #### Calculate Mode from the following | entenute Mode from the following. | | | | | | | | | |-----------------------------------|-----|-----|------|-------|-------|--|--|--| | Marks | 0-4 | 4-8 | 8-12 | 12-16 | 16-20 | | | | | Student | 3 | 5 | 4 | 6 | 2 | | | | # **Solution:** | Marks | No. of Students | |---------|-----------------| | 0 - 4 | 3 | | 4 – 8 | 5 | | 8 - 12 | 4 | | 12 - 16 | 6 | | 16 - 20 | 2 | As the highest frequency is 6 Thus 12 - 16 Model Class As we have $$Mode = l + \frac{f_m - f_0}{(f_m - f_0) + (f_m - f_1)} \times h$$ Here $$l = 12$$ # Ex # 6.3 $$f_m = 6$$ $$f_0 = 4$$ $$f_1 = 2$$ $$h = 4$$ Put the values $$Mode = 12 + \frac{6-4}{(6-4)+(6-2)} \times 4$$ $$Mode = 12 + \frac{2}{2+4} \times 4$$ $$Mode = 12 + \frac{2}{6} \times 4$$ $$Mode = 12 + 0.33 \times 4$$ $$Mode = 12 + 1.32$$ $$Mode = 13.32$$ # Geometric Mean (G.M) Geometric Mean is the n^{th} positive root of n # Geometric Mean of Ungrouped Data Geometric Mean = $$Anti - \log\left(\frac{1}{n}\sum\log X\right)$$ # Example # 21 Find Geometric Mean of the marks 60, 65, 70, 80, 85, 90, 75 # **Solution:** | X | LogX | |----|--------------------| | 60 | 1.7781 | | 65 | 1.8129 | | 70 | 1.8450 | | 75 | 1.8750 | | 80 | 1.9030 | | 85 | 1.9294 | | 90 | 1.9542 | | | $\sum D = 13.0976$ | Geometric Mean = $$Anti - \log\left(\frac{1}{n}\sum \log X\right)$$ Geometric Mean = $$Anti - \log \left(\frac{1}{7}(13.0976)\right)$$ Geometric Mean = Anti - log(1.8711) Geometric Mean = 74.32 # Geometric Mean of Group data $$G.M = anti - log\left(\frac{\sum f \log X}{\sum f}\right)$$ # **Unit # 6** # Ex # 6.3 # Example # 22 Calculate the Geometric Mean for | Marks | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | |----------|--------|---------|---------|---------| | Students | 3 | 4 | 10 | 11 | # **Solution:** | Marks | f | X | $\log X$ | $f \log X$ | |---------|---------------|----|----------|-------------------| | 0 - 20 | 3 | 10 | 1 | 3 | | 20 - 40 | 4 | 30 | 1.4771 | 5.9084 | | 40 - 60 | 10 | 50 | 1.6989 | 16.989 | | 60 - 80 | 11 | 70 | 1.8450 | 20.295 | | | $\sum f = 28$ | | | $\sum f \log X =$ | | | | | | 46.1924 | $$G.M = anti - log\left(\frac{\sum f \log X}{\sum f}\right)$$ Put the values $$G.M = anti - log\left(\frac{46.1924}{28}\right)$$ $$G.M = anti - log(1.697)$$ $$G.M = 44.64$$ # Harmonic Mean of ungroup data Harmonic Mean is the reciprocal of the Arithmetic Mean of the reciprocal values. $$H.M = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$$ $$H.M = \frac{n}{\sum \left(\frac{1}{x}\right)}$$ # Example # 23 Find Harmonic mean of 5, 6, 8, 9, 10. #### **Solution:** As we have $$H.M = \frac{5}{\frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10}}$$ $$H.M = \frac{5}{0.2 + 0.16 + 0.125 + 0.11 + 0.1}$$ $$H.M = \frac{5}{0.695}$$ $$H.M = 7.194$$ # **Harmonic Mean of Group Data** Harmonic Mean of Group Data $$H.M = \frac{\sum f}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \frac{f_3}{x_3} + \dots + \frac{f_n}{x_n}}$$ $$H.M = \frac{\sum f}{\sum \left(\frac{f}{x}\right)}$$ # Unit#6 # Ex # 6.3 ## Example # 24 #### Find Harmonic mean for | Classes | 0-6 | 6-12 | 12-18 | 18- | 24-30 | |---------|-----|------|-------|-----|-------| | | | | | 24 | | | f | 1 | 2 | 5 | 4 | 6 | ## **Solution:** | Classes | f | X | f/X | |---------|---------------|----|---------------------------| | 0 – 6 | 1 | 3 | 0.33 | | 6 – 12 | 2 | 9 | 0.22 | | 12 - 18 | 5 | 15 | 0.33 | | 18 - 24 | 4 | 21 | 0.19 | | 24 - 30 | 6 | 27 | 0.22 | | | $\sum f = 18$ | | $\sum \frac{f}{X} = 1.29$ | $$H.M = \frac{\sum f}{\sum \left(\frac{f}{X}\right)}$$ # Put the values $$H.M = \frac{18}{1.29}$$ $$H.M = 13.95$$ # Weight mean for ungroup data The numerical values which show the relative importance of different items are called weights and the average of different items having different weights is called weighted mean. Let $x_1, x_2, x_3 \dots x_n$ are different values of items having weights $w_1, w_2, w_3 \dots w_n$ then Weighted # Mean is: $$\begin{split} \overline{X}_{w} &= \frac{x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} \dots x_{n}w_{n}}{w_{1} + w_{2} + w_{3} + \dots + w_{n}} \\ \overline{X}_{w} &= \frac{\sum x_{i}w_{i}}{\sum w_{i}} = \frac{\sum xw}{\sum w} \end{split}$$ # Example # 25 The marks obtained by a student in Maths, English, Urdu and Statistics were 70, 60, 80, 65 respectively. Find the average if weights of 2, 1, 3, 1 are assigned to the marks. # **Solution:** | х | W | xw | |----|--------------|----------------| | 70 | 2 | 140 | | 60 | 1 | 60 | | 80 | 3 | 240 | | 65 | 1 | 65 | | | $\sum w = 7$ | $\sum w = 505$ | # Ex # 6.3 As we have $$\overline{X}_w = \frac{\sum xw}{\sum w}$$ $$\overline{X}_w = \frac{505}{7}$$ $$\overline{X}_w = 72.14$$ # **Moving Average** It is succession of averages derived from the successive segments of series of values. It continuously recomputed as new data becomes available. If progresses by dropping the earliest value and adding the latest value. # Example # 26 During first week of May, daily temperatures were recorded as given in the table. Calculate 3 – day moving average temperature. | Days | Temperature | |-----------|-------------| | Saturday | 40 | | Sunday | 37 | | Monday | 36 | | Tuesday | 38 | | Wednesday | 37 | | Thursday | 41 | | Friday | 39 | #### Solution: | Solution: | | | |-----------|-------------|----------------| | Days | Temperature | 3 – day Moving | | | | Average | | Saturday | 40 | | | Sunday | 37 | 40 + 37 + 36 | | | | 3 | | | | = 37.67 | | Monday | 36 | 37 + 36 + 38 | | | | 3 | | | | = 37 | | Tuesday | 38 | 36 + 38 + 37 | | | | 3 | | | | = 37 | | Wednesday | 37 | 38 + 37 + 41 | | | | 3 | | | | = 38.67 | | Thursday | 41 | 37 + 41 + 39 | | | | 3 | | | | = 39 | | Friday | 39 | | # **Unit # 6** # Ex # 6.3 Example # 27 Find median graphically from the following frequency distribution | ii equene | distribution: | | | | | | | |-----------
---------------|-----|-----|-----|-----|-----|--| | Classes | 10- | 15- | 20- | 25- | 30- | 35- | | | | 14 | 19 | 24 | 29 | 34 | 39 | | | F | 1 | 5 | 7 | 2 | 6 | 4 | | # **Solution:** | Classes | Class Boundaries | f | C.f | |---------|------------------|---|-----| | 10-14 | 9.5-14.5 | 1 | 1 | | 15-19 | 14.5-19.5 | 5 | 6 | | 20-24 | 19.5-24.5 | 7 | 13 | | 25-29 | 24.5-29.5 | 2 | 15 | | 30-34 | 29.5-34.5 | 6 | 21 | | 35-39 | 34.5-39.5 | 4 | 25 | $$Median = \frac{n}{2}th \ value$$ $$Median = \frac{25}{2}th \ value$$ $$Median = 12.5th \ value$$ So $$Median = 24.5$$ #### **Quartiles** $$1st \ Quartile = \frac{n}{4}th \ value$$ $$2nd \ Quartile = \frac{2n}{4}th \ value$$ $$2nd \ Quartile = \frac{n}{2}th \ value = Median$$ $$3rd \ Quartile = \frac{3n}{4}th \ value$$ # Ex # 6.3 # Example # 28 Find mode graphically from the following frequency distribution. | Classes | 20- | 25- | 30- | 35- | 40- | 45- | 50- | |---------|-----|-----|-----|-----|-----|-----|-----| | | 24 | 29 | 34 | 39 | 44 | 49 | 54 | | F | 1 | 4 | 8 | 11 | 15 | 9 | 2 | # **Solution:** | Classes | Class Boundaries | f | |---------|------------------|----| | 20-24 | 19.5-24.5 | 1 | | 25-29 | 24.5-29.5 | 4 | | 30-34 | 29.5-34.5 | 8 | | 35-39 | 34.5-39.5 | 11 | | 40-44 | 39.5-44.5 | 15 | | 45-49 | 44.5-49.5 | 9 | | 50-54 | 49.5-54.5 | 2 | # Find Q_1 and Q_2 from the following distribution. | Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | |-------|------|-------|-------|-------|-------| | f | 3 | 5 | 9 | 3 | 2 | # **Solution:** | Marks | f | C.f | |-------|---|-----| | 0-10 | 3 | 3 | | 10-20 | 5 | 8 | | 20-30 | 9 | 17 | | 30-40 | 3 | 20 | | 40-50 | 2 | 22 | Location of $$Q_1 = \frac{n}{4}$$ th value Location of $Q_1 = \frac{22}{4}$ th value Location of $Q_1 = 5.5$ th value Location of $Q_3 = \frac{3n}{4}$ th value https://tehkals.com Location of $$Q_3 = \frac{3(22)}{4}$$ th value Location of $Q_3 = \frac{66}{4}$ th value # Page # 152 The following are weights (in kg) of students of Q1: 10th grade are 45, 30, 25, 36, 42, 27, 31, 43, 49, 50. Calculate mean of the weights. # **Solution:** Let X=45, 30, 25, 36, 42, 27, 31, 43, 49, 50 As we have $$Mean = \frac{\sum X}{n}$$ $$Mean = \frac{45 + 30 + 25 + 36 + 42 + 27 + 31 + 43 + 49 + 50}{10}$$ $$Mean = \frac{378}{10}$$ $$Mean = \frac{37.8}{10}$$ # **Unit # 6** # Ex # 6.3 Weights of students of 10th grade are 45, 30, **Q2**: 25, 36, 42, 27, 31, 43, 49, 50. Calculate mean by Short cut Method **Solution:** Let assumed mean=25 | Let assumed mean 23 | | | |---------------------|----------------|--| | X | D = X - a | | | 45 | 45 - 25 = 20 | | | 30 | 30 - 25 = 5 | | | 25 | 25 - 25 = 0 | | | 36 | 36 - 25 = 11 | | | 42 | 42 - 25 = 17 | | | 27 | 27 - 25 = 2 | | | 31 | 31 - 25 = 6 | | | 43 | 43 - 25 = 18 | | | 49 | 49 - 25 = 24 | | | 50 | 50 - 25 = 25 | | | $\sum X = 378$ | $\sum D = 128$ | | $$\overline{X} = a + \frac{\sum D}{n}$$ Put the values $$\overline{X} = 25 + \frac{128}{10}$$ $$\overline{X} = 25 + 12.8$$ $$\overline{X} = 37.8$$ #### Q3: Using an assumed mean, find the mean of following numbers 1242, 1248, 1252, 1244, 1249 # **Solution:** Let assumed mean=1242 | X | D=X-a | |------|---------------| | 1242 | 1242-1242=0 | | 1248 | 1248-1242=6 | | 1252 | 1252-1242=10 | | 1244 | 1244-1242=2 | | 1249 | 1249-1242=7 | | | $\sum D = 25$ | $$\overline{X} = a + \frac{\sum D}{n}$$ Put the values $$\overline{X} = 1242 + \frac{25}{5}$$ $$\overline{X} = 1242 + 5$$ $$\overline{X} = 1247$$ # **Unit # 6** # Ex # 6.3 #### Find the mean marks obtained by students of **O4**: 9th class in maths. | Class in maths. | | | | | | |-----------------|-----|------|------|------|------| | Score | 0 – | 16 – | 32 – | 48 – | 64 – | | | 15 | 31 | 47 | 63 | 75 | | F | 0 | 10 | 40 | 70 | 45 | # Solution: | Solution: | | | | |-----------|------------|------|-------------| | Score | f | X | fX | | | | L+U | | | | | = | | | 0 - 15 | 0 | 7.5 | 0 | | 16 – | 10 | 23.5 | 235 | | 31 | | | | | 32 – | 40 | 39.5 | 1580 | | 47 | | | | | 48 – | 70 | 55.5 | 3885 | | 63 | | | | | 64 – | 45 | 69.5 | 3127.5 | | 75 | | | | | | $\sum f =$ | | $\sum fX =$ | | | 165 | | 8827.5 | As we have $$\overline{X} = \frac{\sum fX}{\sum f}$$ Put the values $$\overline{X} = \frac{8827.5}{165}$$ $$\bar{X} = 53.5$$ #### Find the median of Heights of boys in inches **O5**: # 64, 65, 65, 66, 66, 67 #### **Solution:** 64, 65, 65, 66, 66, 67 As n=6 $$Median = \frac{65 + 66}{2}$$ $$Median = \frac{131}{2}$$ Median = 65.5 #### Q5: Find the median of Salaries of 8 workers of a #### factory 7000, 6600, 8000, 4500, 7500, 11000, (ii) 9000, 7500 # **Solution:** 7000, 6600, 4500, 7500, 11000, 9000, 7500 First arrange the data in ascending order 4500, 6600, 7000, 7500, 7500, 8000, 9000, 11000 As n=8 # Ex # 6.3 So $$Median = \frac{7500 + 7500}{2}$$ $$Median = \frac{1500}{2}$$ $$Median = 7500$$ Median = 7500 Find the Arithmetic mean, Geometric mean, **O6**: Median and Mode of the following data 58, 59, 60,62, 64, 64, 65, 67, 67, 68, 70, 71, 71, 7, 73 **Solution:** | | X | Log x | |---|----------------|-------------------------| | | 58 | 1.7634 | | | 59 | 1.7709 | | | 60 | 1.7782 | | | 62 | 1.7924 | | | 64 | 1.8062 | | | 64 | 1.8062 | | | 65 | 1.8129 | | | 67 | 1.8261 | | ₹ | 67 | 1.8261 | | | 68 | 1.8325 | | 1 | 70 | 1.8451 | | | 71 | 1.8513 | | | 71 | 1.8513 | | | 71 | 1.8513 | | 4 | 73 | 1.8633 | | | $\sum X = 990$ | $\sum \log X = 27.2770$ | Arithmetic Mean = $$\frac{\sum X}{n}$$ Arithmetic Mean = $\frac{990}{15}$ Arithmetic Mean = 66 # **Geometric Mean** Geometric Mean = $$Anti - \log\left(\frac{1}{n}\sum\log X\right)$$ Geometric Mean = $$Anti - \log \left(\frac{1}{15} (27.2770) \right)$$ Geometric Mean = Anti - log(1.8185) Geometric Mean = 65.83 ## Median As n=15 Hence central exact value is median. Median = 67 #### Mode As mode is the most repeated value in a data Mode = 71 # Ex # 6.3 # Q7: A set of data contains the values of 148, 145, 160, 157, 156, 160. Show that Mode>Median>Mean # **Solution:** 148, 145, 160, 157, 156, 160 To Show Mode>Median>Mean Now Mean = $$\frac{\sum X}{n}$$ Mean = $\frac{148 + 145 + 160 + 157 + 156 + 160}{6}$ $$Mean = \frac{926}{6}$$ Mean = 154.33 ## Median First arrange the data in ascending order As n=6 So $$Median = \frac{156 + 157}{2}$$ $$Median = \frac{313}{2}$$ Median = 156.5 # Mode As mode is the most repeated value in a data 50 Mode = 160 Thus Mode>Median>Mean # Q8: From the following distribution | Wages | 112 | 117 | 122 | 127 | 132 | |---------|-----|-----|-----|-----|-----| | _ | _ | _ | _ | _ | _ | | | 116 | 121 | 126 | 131 | 136 | | Workers | 3 | 20 | 11 | 4 | 5 | - (i) Construct a frequency table - (ii) Find class boundaries for each group - (iii) Calculate Median, Mode, Harmonic Mean and Geometric Mean #### **Solution:** | Wages | f | Class Boundaries | |-----------|----|------------------| | 112 - 116 | 3 | 111.5 – 116.5 | | 117 - 121 | 20 | 116.5–121.5 | | 122 - 126 | 11 | 121.5 – 126.5 | | 127 - 131 | 4 | 126.5 – 131.5 | | 132 - 136 | 5 | 131.5 – 136.5 | # Ex # 6.3 ## Median | Wages | f | Class | C.f | |-----------|------|---------------|------| | | | Boundaries | | | 112 – 116 | 3 | 111.5 – 116.5 | 3 C | | 117 – 121 | 20 f | 116.5–121.5 | 23 | | 122 – 126 | 11 | 121.5 – 126.5 | 34 | | 127 – 131 | 4 | 126.5 – 131.5 | 38 | | 132 – 136 | 5 | 131.5 – 136.5 | 43 n | $$Median = \frac{n}{2}th term$$ $$Median = \frac{43}{2}th term$$ Median = 21.5 th term Now $$Median = l + \frac{h}{f} \left(\frac{n}{2} - C \right)$$ $$l = 116.5$$ $$h = 5$$ $$C = 3$$ Put the values $$Median = 116.5 + \frac{5}{20} \left(\frac{43}{2} - 3 \right)$$ $$Median = 116.5 + 0.25(21.5 - 3)$$ $$Median = 116.5 + 0.25(18.5)$$ $$Median = 116.5 + 4.625$$ Median = 121.125 # Mode | Wages | f | Class Boundaries | |-----------|-----------|------------------| | 112 – 116 | $3 f_0$ | 111.5 – 116.5 | | 117 – 121 | $20 f_m$ | 116.5–121.5 | | 122 – 126 | 11 f_1 | 121.5 – 126.5 | | 127 – 131 | 4 | 126.5 – 131.5 | | 132 - 136 | 5 | 131.5 – 136.5 | $$Mode = l + \frac{f_m - f_0}{(f_m - f_0) + (f_m - f_1)} \times h$$ $$l = 116.5$$ $$h = 5$$ $$f_m = 20$$ $$f_0 = 3$$ $$f_1 = 11$$ Put the values Mode = $$116.5 + \frac{20 - 3}{(20 - 3) + (20 - 11)} \times 5$$ Mode = $116.5 + \frac{17}{17 + 9} \times 5$ https://tehkals.com # Unit # 6 **Q9**: | | Ex # 6.3 | |--------------|--------------------| | Mode = 116.5 | $+\frac{85}{17+9}$ | | Mode = 116.5 | Q5 | $$Mode = 116.5 + 3.27$$ Mode = 119.77 # **Harmonic Mean** | Wages | f | X | f/X | |-----------|---------------|-----|----------------------------| | 112 – 116 | 3 | 114 | 0.026 | | 117 – 121 | 20 | 119 | 0.168 | | 122 – 126 | 11 | 124 | 0.089 | | 127 – 131 | 4 | 129 | 0.031 | | 132 - 136 | 5 | 134 | 0.037 | | | $\sum f = 43$ | | $\sum \frac{f}{X} = 0.351$ | $$H.M = \frac{\sum f}{\sum \left(\frac{f}{X}\right)}$$ # Put the values $$H.M = \frac{43}{0.351}$$ H.M = 122.5 # Geometric Mean | Wages | f | X | $\log X$ | $f \log X$ | |-------|------------|-----|----------|-------------------| | 112 – | 3 | 114 | 2.0569 | 6.1707 | | 116 | | | | \cup | | 117 – | 20 | 119 | 2.0775 | 41.5500 | | 121 | | | | | | 122 – | 11 | 124 | 2.0934 | 23.0274 | | 126 | | | | | | 127 – | 4 | 129 | 2.1106 | 8.424 | | 131 | | | | | | 132 – | 5 | 134 | 2.1271 | 10.6355 | | 136 | | | | | | | $\sum f =$ | | | $\sum f \log X =$ | | | 43 | | | 89.8260 | $$G.M = anti - log\left(\frac{1}{\sum f} \times \sum f \log X\right)$$ Put the values $$G.M = anti - log\left(\frac{1}{43} \times 89.8260\right)$$ $$G.M = anti - log(2.0890)$$ $$G.M = 122.7374$$ # Find Median, Q1, Q3 and mode Graphically | = === = = = = = = = = = = = = = = = = | | | | | | |---------------------------------------|------|------|------|------|------| | Classes | 10 – | 15 – | 20 – | 25 – | 30 – | | | 14 | 19 | 24 | 29 | 34 | | F | 1 | 3 | 7 | 12 | 2 | # **Solution:** | Classes | Boundaries | F | C.f | |---------|-------------|----|-----| | 10 - 14 | 9.5 - 14.5 | 1 | 1 | | 15 – 19 | 14.5 – 19.5 | 3 | 4 | | 20 - 24 | 19.5 - 24.5 | 7 | 11 | | 25 - 29 | 24.5 - 29.5 | 12 | 23 | | 30 - 34 | 29.5 - 34.5 | 2 | 25 | # Median
$$Median = \frac{n}{2}th \ value$$ $$Median = \frac{25}{2}th \ value$$ Median = 12.5 th value # Quartile $$Q_1 = \frac{n}{4}th \ value$$ $$Q_1 = \frac{25}{4} th \ value$$ $$Q_1 = 8.25 th value$$ # And Also $$Q_3 = \frac{3n}{4}th \ value$$ $$Q_3 = \frac{3(25)}{4} th \ value$$ $$Q_3 = \frac{75}{4} th \ value$$ $$Q_3 = 18.75 \ th \ value$$ # Ex # 6.4 # **Measure of Dispresion** Disprssion is the scatterdness of values from its central value (Average) Types of Measure of Dispresion are: Range Standard Deviation Variance # Range The range is the difference between the smallest observation and the largest observation. # Formula $Range = Largest \ value - Smallest \ value$ ## Note: Range is very rarely used as it does not tell us about the observation in between the largest and smallest values. # Example #30 What is the range of the data 209, 260, 270, # 311, 311 # **Solution:** $Largest\ value = 311$ Smallest value = 209 $$Range = ?$$ As we have $Range = largest \ value - smallest \ value$ Range = 311 - 209 Range = 102 Example # 31: Following are the names and heights of mountains in Karakoram. Find the range of heights. | K-2 | 8611 m | |----------------|--------| | Gasherbrum I | 8068 m | | Broad | 8047 m | | Gasherbrum II | 8035 m | | Gasherbrum III | 7952 m | | Gasherbrum IV | 7925 m | | Rakaposhi | 7788 m | # **Solution**: $Largest\ height = 8611\ m$ $Smallest\ height = 7788\ m$ Range = ? As we have $Range = largest \ height - smallest \ height$ Range = 8611 - 7788 Range = 823 m # Ex # 6.4 Exp32 Calculate the range from the given data. | Classes | 5 | 10 | 15 | 20 | 25 | |---------|-----|------|------|------|------| | | - 9 | - 14 | - 19 | - 24 | - 29 | | F | 10 | 15 | 12 | 21 | 3 | ## **Solution:** | Classes | Boundaries | Frequency | |---------|-------------|-----------| | 5 – 9 | 4.5 - 9.5 | 10 | | 10 - 14 | 9.5 - 14.5 | 15 | | 15 - 19 | 14.5 - 19.5 | 12 | | 20 - 24 | 19.5 - 24.5 | 21 | | 25 - 29 | 24.5 - 29.5 | 3 | Lower Limit of first group = 4.5 *Upper Limit of last group* = 29.5 Range = ? As we have Range = 29.5 - 4.5 Range = 25 # Example # 33 The number of grams in various candy bars are listed below. Find the mean, median, mode, and range. Round to the nearest tenth if necessary. Then selected the appropriate measure of central tendency or range to describe the data. Justify your answer. #### **Solution:** 9, 8, 9, 8, 9, 13, 24 #### Mear $$Mean = \frac{9+8+9+8+9+13+24}{7}$$ $$Mean = \frac{80}{7}$$ Mean = 11.43 # Median First arrange the data 8, 8, 9, 9, 9, 13, 24 As number of quantities=7 So n=odd number As we have Median = $$\left(\frac{n+1}{2}\right)$$ th value Median = $\left(\frac{7+1}{2}\right)$ th value $$Median = \left(\frac{8}{2}\right) th \ value$$ Median = 4th value So Median = 9 ### Ex # 6.4 #### Range Range = Max. value - Min. value Range = 24 - 8 Range = 16 The appropriate measure of central tendency or range to describe the data is median or mode. The mean is affected by the highest value 24 gram #### **Standard Deviation** It is the positive square root of the average of squared deviations measured from Arithmetic Mean (A.M). #### **Standard Deviation for Ungrouped Data** Standard Deviation = $$\sqrt{\frac{\sum (X - \overline{X})^2}{n}}$$ OR Standard Deviation = $$\sqrt{\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2}$$ # Standard Deviation for Grouped Data (Discrete and Continuous data) Standard Deviation = $$\sqrt{\frac{\sum f(X - \overline{X})^2}{\sum f}}$$ OR Standard Deviation = $$\sqrt{\frac{\sum f X^2}{\sum f} - \left(\frac{\sum f X}{\sum f}\right)^2}$$ #### Variance Variance is the square of standard deviation. Variance is usually denoted by the symbol "S". #### Variance for Ungrouped Data Variance = $$S^2 = \frac{\sum (X - \overline{X})^2}{n}$$ OR Variance = $$S^2 = \frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2$$ # Variance for Grouped Data (Discrete and Continuous data) Variance = $$S^2 = \frac{\sum f(X - \overline{X})^2}{\sum f}$$ OR Variance = $$S^2 = \frac{\sum f X^2}{\sum f} - \left(\frac{\sum f X}{\sum f}\right)^2$$ #### Example # 34 Find variance and standard deviation of 6, 8, 10, 12, 14 #### **Unit # 6** #### Solution: | COIGGIOII. | | |---------------|------------------| | X | X^2 | | 6 | 36 | | 8 | 64 | | 10 | 100 | | 12 | 144 | | 14 | 196 | | $\sum X = 50$ | $\sum X^2 = 540$ | Ex # 6.4 Variance = $$\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2$$ Put the values $$Variance = \frac{540}{5} - \left(\frac{50}{5}\right)^2$$ Variance = $$108 - (10)^2$$ $$Variance = 108 - 100$$ Variance = 8 Standard Deviation Standard Deviation = $$\sqrt{\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2}$$ Put the values Standard Deviation = $$\sqrt{\frac{540}{5} - \left(\frac{50}{5}\right)^2}$$ Standard Deviation = $$\sqrt{108 - (10)^2}$$ Standard Deviation = $$\sqrt{108 - 100}$$ Standard Deviation = $\sqrt{8}$ Standard Deviation = 2.83 #### Example #35 #### Find Standard Deviation and Variance | Rotten | 0- | 4- | 8- | 12- | 16- | 20- | |--------|----|----|----|-----|-----|-----| | Eggs | 4 | 8 | 12 | 16 | 20 | 24 | | Crates | 5 | 10 | 15 | 20 | 6 | 4 | #### Solution: | Solution: | | | | | |-----------|------------|----|-----------------|---------------| | Defective | f | X | fΧ | fX^2 | | 0-4 | 5 | 2 | 10 | 20 | | 4-8 | 10 | 6 | 60 | 360 | | 8-12 | 15 | 10 | 150 | 1500 | | 12-16 | 20 | 14 | 280 | 3920 | | 16-20 | 6 | 18 | 108 | 1944 | | 20-24 | 4 | 22 | 88 | 1936 | | | $\sum f =$ | | $\sum fX = 696$ | $\sum fX^2 =$ | | | 60 | | 696 | 9680 | #### Ex # 6.4 #### Variance $$Variance = \frac{\sum f X^2}{\sum f} - \left(\frac{\sum f X}{\sum f}\right)^2$$ 9680 (696)² $$Variance = \frac{9680}{60} - \left(\frac{696}{60}\right)^2$$ $$Variance = 161.33 - (11.6)^2$$ $$Variance = 161.33 - 134.56$$ Variance = 26.77 #### **Standard Deviation** Standard Deviation = $\sqrt{\text{variance}}$ Standard Deviation = $\sqrt{26.77}$ Standard Deviation = 5.17 #### Ex # 6.4 # Q1: Find the range of 11, 13, 15, 21, 19, 23 Solution: 11, 13, 15, 21, 19, 23 $$Maximum = 23$$ $$Minimum = 11$$ Range = $$Maximum - Minimum$$ $$Range = 23 - 11$$ Range $$= 12$$ # Q2: A bank branch manager interested in waiting times of customers carried out a survey. A random sample of 12 customers is selected and yielded following 5.90, 9.66, 5.79, 8.02, 8.73, 8.01, 10.49, 8.35, 6.68, 5.64, 5.47, 9.91 Solution: 5.90, 9.66, 5.79, 8.02, 8.73, 8.01, 10.49, 8.35, 6.68, 5.64, 5.47, 9.91 First arrange the data 5.47, 5.64, 5.79, 5.90, 6.68, 8.01, 8.02, 8.35, 8.73, 9.66, 9.91, 10.49 | X | X^2 | |--------------------|-----------------------| | 5.47 | 29.9209 | | 5.64 | 31.8096 | | 5.79 | 33.5241 | | 5.90 | 34.81 | | 6.68 | 44.6224 | | 8.01 | 64.1601 | | 8.02 | 64.3204 | | 8.35 | 69.7225 | | 8.73 | 76.2129 | | 9.66 | 93.3156 | | 9.91 | 98.2081 | | 10.49 | 110.0401 | | $\Sigma X = 92.65$ | $\sum X^2 = 750.6667$ | #### **Unit # 6** #### Ex # 6.4 #### Average Average = $$\frac{\sum X}{n}$$ Average = $$\frac{92.65}{12}$$ Average $$= 7.72$$ #### Median As $$n=12$$ So $$Median = \frac{8.01 + 8.02}{2}$$ $$Median = \frac{16.03}{2}$$ Median = 8.015 #### **Standard Deviation** Standard Deviation = $$\sqrt{\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2}$$ Put the values Standard Deviation = $$\sqrt{\frac{750.6667}{12} - \left(\frac{92.65}{12}\right)^2}$$ Standard Deviation = $$\sqrt{62.5556 - (7.7208)^2}$$ Standard Deviation = $$\sqrt{62.5556 - 59.6107}$$ Standard Deviation = $\sqrt{2.9449}$ Standard Deviation = 1.7160 # Q3: Calculate the Range, Variance, and Standard Deviation for discrete data | X | 5 | 10 | 11 | 13 | 15 | |---|---|----|----|----|----| | f | 2 | 3 | 4 | 1 | 5 | #### **Solution:** | X | f | fΧ | fX^2 | |----|-----------------|-----------------|---------------------| | 5 | 2 | 10 | 50 | | 10 | 3 | 30 | 300 | | 11 | 4 | 44 | 484 | | 13 | 1 | 13 | 169 | | 15 | 5 | 75 | 1125 | | | $\Sigma f = 15$ | $\sum fX = 172$ | $\sum f X^2 = 2128$ | #### Range $Minimum\ Value = 5$ $Maximum\ Value = 15$ Range = ? As we have Range = 15 - 5 Range = 10 #### Ex # 6.4 #### Variance $$Variance = \frac{\sum f X^2}{\sum f} - \left(\frac{\sum f X}{\sum f}\right)^2$$ $$Variance = \frac{2128}{15} - \left(\frac{172}{15}\right)^2$$ $$Variance = 141.87 - (11.47)^2$$ $$Variance = 141.87 - 131.56$$ Variance = 10.31 #### **Standard Deviation** Standard Deviation = $$\sqrt{\frac{\sum fX^2}{\sum f} - \left(\frac{\sum fX}{\sum f}\right)^2}$$ Standard Deviation = $$\sqrt{\frac{2128}{15} - \left(\frac{172}{15}\right)^2}$$ Standard Deviation = $$\sqrt{141.87 - (11.47)^2}$$ Standard Deviation = $$\sqrt{141.87 - 131.56}$$ Standard Deviation = $$\sqrt{10.31}$$ Standard Deviation = 3.21 # Q4: The following table shows the marks obtained by 10 students of two sections of 10th class. | Ī | Sec | 7 | 9 | 6 | 9 | 4 | 7 | 5 | 8 | 8 | 7 | |---|-----|---|----|---|---|---|---|----|---|---|---| | | A | | | | | | | | | | | | Ī | Sec | 6 | 10 | 6 | 4 | 2 | 8 | 10 | 6 | 9 | 9 | | | В | | | | | | | 7 | | | | #### **Solution:** #### Section A | Section 1 | | |---------------|--------------------------| | X | <i>X</i> ² 49 | | 7 | 49 | | 9 | 81 | | 6 | 36 | | 9 | 81 | | 4 | 16 | | 7 | 49 | | 5 | 25
64
64
49 | | 8 | 64 | | 8 | 64 | | 7 | 49 | | $\sum X = 70$ | $\sum X^2 = 514$ | #### **Arithmetic Mean** $$\overline{X} = \frac{\sum X}{n}$$ $$\overline{X} = \frac{70}{10}$$ $$\overline{X} = 7$$ #### **Unit # 6** #### Ex # 6.4 #### Variance Variance = $$\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2$$ Put the values $$Variance = \frac{514}{10} - \left(\frac{70}{10}\right)^2$$ Variance = $$51.4 - (7)^2$$ $$Variance = 51.4 - 49$$ Variance = 2.4 #### **Section B** | X | X^2 | |---------------|------------------| | 6 | 36 | | 10 | 100 | | 6 | 36 | | 4 | 16 | | 2 | 4 | | 8 | 64 | | 10 | 100 | | 6 | 36 | | 9 | 81 | | 9 | 81 | | $\sum X = 70$ | $\sum X^2 = 554$ | #### **Arithmetic Mean** $$\overline{X} = \frac{\sum X}{n}$$ $$\overline{X} = \frac{70}{10}$$ $$\overline{Y} = 7$$ #### Variance Variance = $$\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2$$ Put
the values Variance = $$\frac{554}{10} - \left(\frac{70}{10}\right)^2$$ Variance = $$55.4 - (7)^2$$ $$Variance = 55.4 - 49$$ Variance = 6.4 ## Q5: Following are the marks (out of 75) of eight | students i | II LW | o sun | rjecis | • | | | | | |------------|-------|-------|--------|----|----|----|----|----| | Student | Α | В | С | D | Е | F | G | Н | | Maths | 54 | 63 | 59 | 45 | 52 | 35 | 61 | 68 | | Physics | 52 | 55 | 57 | 51 | 56 | 58 | 50 | 59 | Compare the standard deviation of the marks and tell that in which subject students are more consistent. #### Ex # 6.4 #### **Solution:** #### Maths | X | X^2 | |----------------|--------------------| | 54 | 2916 | | 63 | 3969 | | 59 | 3481 | | 45 | 2025 | | 52 | 2704 | | 35 | 1225 | | 61 | 3721 | | 68 | 4624 | | $\sum X = 437$ | $\sum X^2 = 24665$ | #### Arithmetic Mean $$\overline{X} = \frac{\sum X}{n}$$ $$\overline{X} = \frac{437}{8}$$ $$\overline{X} = 54.625$$ #### **Standard Deviation** Standard Deviation = $$\sqrt{\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2}$$ #### Put the values Standard Deviation = $$\sqrt{\frac{24665}{8} - \left(\frac{437}{8}\right)^2}$$ Standard Deviation = $\sqrt{3083.125 - (54.625)^2}$ Standard Deviation = $\sqrt{3083.125 - 2983.891}$ Standard Deviation = $\sqrt{99.234}$ Standard Deviation = 9.962 #### **Physics** | 1 Hysics | | |------------------|--------------------| | X | X^2 | | 52 | 2704 | | 55 | 3025 | | 57 | 3249 | | 51 | 2601 | | 56 | 3136 | | 58 | 3364 | | 50 | 2500 | | 59 | 3481 | | $\Sigma X = 438$ | $\sum X^2 = 24060$ | #### **Arithmetic Mean** $$\overline{X} = \frac{\sum X}{n}$$ $$\overline{X} = \frac{438}{8}$$ #### **Unit # 6** $$\overline{X} = 54.75$$ #### **Standard Deviation** Standard Deviation = $$\sqrt{\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2}$$ Put the values Standard Deviation = $$\sqrt{\frac{24060}{8} - \left(\frac{438}{8}\right)^2}$$ Standard Deviation = $\sqrt{3007.5 - (54.75)^2}$ Standard Deviation = $\sqrt{3007.5 - 2997.6}$ Standard Deviation = $\sqrt{9.94}$ Standard Deviation = 3.15 # The following is the distribution for the number of defective bulbs in 30 cartons (Packs). Find variance and standard deviation of defective bulbs. | or derective builds. | | | | | | | |----------------------|-----|-----|-------|-------|-----|--| | Defective | 0 – | 2 – | 4 – 6 | 6 - 8 | 8 – | | | | 2 | 4 | | | 10 | | | Packs | 1 | 3 | 15 | 10 | 2 | | #### **Solution**: Q6: | Dolution. | | | | | |-----------|------|---|-------|--------| | Defective | f | X | fX | fX^2 | | 0 - 2 | 1 | 1 | 1 | 1 | | 2-4 | 3 | 3 | 9 | 27 | | 4-6 | 15 | 5 | 75 | 375 | | 6 - 8 | 10 | 7 | 70 | 490 | | 8 – 10 | 2 | 9 | 18 | 162 | | | f | | fX | fX^2 | | | = 31 | | = 173 | = 1055 | #### Variance $$Variance = \frac{\sum f X^2}{\sum f} - \left(\frac{\sum f X}{\sum f}\right)^2$$ $$1055 \quad (173)^2$$ $$Variance = \frac{1055}{31} - \left(\frac{173}{31}\right)^2$$ $Variance = 34.03 - (5.58)^2$ Variance = 34.03 - 31.14 Variance = 2.89 #### **Standard Deviation** Standard Deviation = $\sqrt{\text{variance}}$ Standard Deviation = $\sqrt{2.89}$ Standard Deviation = 1.7 # **MATHEMATICS** Class 10th **Unit #7** | NAME: | | | |-----------|----------|-------------| | F.NAME: | | | | CLASS: | SECTION: | _ | | ROLL #: S | SUBJECT: | - | | ADDRESS: | | | | | | | | SCHOOL: | | | # **UNIT** # 7 **Unit #7** #### INTRODUCTION TO TRIGNOMETRY #### Ex # 7.1 - $1^{o} = One Degree$ - 1' = 0ne minute - $1^{"}$ = One second #### Note - $1^{\circ} = 60 \text{ minutes} = 60'$ - 1' = 60 seconds = 60'' - $1^{\circ} = 3600 \text{ seconds} = 3600^{\circ}$ #### Also - $1' = \left(\frac{1}{60}\right)^0$ - $1" = \left(\frac{1}{3600}\right)^{0}$ - $1'' = \left(\frac{1}{60}\right)'$ #### Example # 1: Convert 15°30′25" to decimal form. #### **Solution:** 15°30′25 As $$1' = \left(\frac{1}{60}\right)^0$$ and $1'' = \left(\frac{1}{3600}\right)^0$ 15°30′25" $$= 15^{\circ} + \left(30 \times \frac{1}{60}\right)^{\circ} + \left(25 \times \frac{1}{3600}\right)^{\circ}$$ - $= 15^{\circ} + 0.5^{\circ} + 0.0069^{\circ}$ - $= 15.5069^{\circ}$ Thus $15^{\circ}30'25'' = 15.5069^{\circ}$ #### Example # 2: Convert 38. 39° to D°M'S" form. #### **Solution:** - 42.25° - As $1^{\circ} = 60'$ and 1' = 60'' - $38.39^{\circ} = 38^{\circ} + 0.39^{\circ}$ - $38.39^{\circ} = 38^{\circ} + (0.39 \times 60)'$ - $38.39^{\circ} = 38^{\circ} + 23.4'$ - $38.39^{\circ} = 38^{\circ} + 23' + 0.4'$ - $38.39^{\circ} = 38^{\circ} + 23' + (0.4 \times 60)^{\circ}$ - $38.39^{\circ} = 38^{\circ} + 23' + 24''$ - $38.39^{\circ} = 38^{\circ}23'24''$ #### Relation between radians and degrees As circumference of a circle = 2π r #### Ex # 7.1 - So $2\pi \ radians = 360^{\circ}$ - $\pi \ radians = 180^{0}$ - $\frac{\pi}{2} radians = 90^{\circ}$ $\frac{\pi}{3} radians = 60^{\circ}$ - $\frac{\pi}{5}$ radians = 30° and so on ... - π radians = 180° - $1 \, radian = \frac{180^{\circ}}{\pi}$ - $1 \ radian = \frac{}{3.14159}$ - $1 \, radian = 57.296^{\circ}$ - $1 \, radian = 57.3^{\circ}$ #### **Similarly** - $180^{\circ} = \pi \ radians$ - $1^0 = \frac{\pi}{180}$ radians - $1^0 = \frac{3.14159}{180} \ radians$ - $1^0 = 0.0175 \ radians$ # Example # 3: Convert $\frac{4\pi}{7}$ radians to degrees. #### **Solution:** - $\frac{1}{7}$ radians - As π radian = 180° #### Now - $\frac{4\pi}{7}$ radians = $\frac{4}{7} \times 180^{\circ}$ - $\frac{4\pi}{7}$ radians = $4 \times 25.71^{\circ}$ - $\frac{m}{7}$ radians = 102.84° #### Example # 4 Convert 31°45' to radians. #### **Solution:** 31°45′ First, we convert it into Decimal form As $$1' = \left(\frac{1}{60}\right)^0$$ So $$31^{\circ}45' = 31^{\circ} + \left(45 \times \frac{1}{60}\right)^{\circ}$$ $$31^{\circ}45' = 31^{\circ} + 0.75^{\circ}$$ $$31^{\circ}45' = 31.75^{\circ}$$ Now we have 31.75° As $$1^{\circ} = \frac{\pi}{180}$$ radians Now $$31.75^{\circ} = 31.75 \times \frac{\pi}{180}$$ radians $$31.75^{\circ} = 31.75 \times \frac{3.14159}{180}$$ radians $$31.75^{\circ} = 31.75 \times 0.0175$$ radians $$31.75^{\circ} = 0.5556$$ radians # Q1: Convert the following angles from $D^oM'S^{"}$ forms to decimal forms. (i) 80°15′35" #### **Solution:** 80°15′35" As $$1' = \left(\frac{1}{60}\right)^{0}$$ and $1'' = \left(\frac{1}{3600}\right)^{0}$ So $$80^{\circ}15'35'' = 80^{\circ} + \left(15 \times \frac{1}{60}\right)^{\circ} + \left(35 \times \frac{1}{3600}\right)^{\circ}$$ $$80^{\circ}15'35'' = 80^{\circ} + 0.25^{\circ} + 0.0097^{\circ}$$ $$80^{\circ}15'35'' = 80.2597^{\circ}$$ #### (ii) 39°48′55 #### **Solution:** 39°48′55" As $$1' = \left(\frac{1}{60}\right)^{0}$$ and $1'' = \left(\frac{1}{3600}\right)^{0}$ So $$39^{\circ}48'55" = 39^{\circ} + \left(48 \times \frac{1}{60}\right)^{\circ} + \left(55 \times \frac{1}{3600}\right)^{\circ}$$ $$39^{\circ}48'55'' = 39^{\circ} + 0.8^{\circ} + 0.0153^{\circ}$$ $$39^{\circ}48'55'' = 39.8153^{\circ}$$ #### (iii) 84°19′10["] #### **Solution:** 84°19′10" As $$1' = \left(\frac{1}{60}\right)^{0}$$ and $1'' = \left(\frac{1}{3600}\right)^{0}$ So $$84^{\circ}19'10'' = 84^{\circ} + \left(19 \times \frac{1}{60}\right)^{\circ} + \left(10 \times \frac{1}{3600}\right)^{\circ}$$ $$84^{\circ}19'10'' = 84^{\circ} + 0.32^{\circ} + 0.0028^{\circ}$$ $$84^{\circ}19'10'' = 84.3228^{\circ}$$ #### **Unit #7** #### (iv) 18°6′21" #### **Solution:** 18°6′21 As $$1' = \left(\frac{1}{60}\right)^0$$ and $1'' = \left(\frac{1}{3600}\right)^0$ Sc $$18^{\circ}6'21'' = 18^{\circ} + \left(6 \times \frac{1}{60}\right)^{\circ} + \left(21 \times \frac{1}{3600}\right)^{\circ}$$ $$18^{\circ}6'21'' = 18^{\circ} + 0.1^{\circ} + 0.0058^{\circ}$$ $$18^{\circ}6'21'' = 18.1058^{\circ}$$ # Q2: Convert the following angles from decimal forms to $D^oM'S^{"}$ (i) 42.25° #### **Solution:** 42.25° As $$1^{\circ} = 60'$$ and $1' = 60''$ $$42.25^{\circ} = 42^{\circ} + 0.25^{\circ}$$ $$42.25^{\circ} = 42^{\circ} + (0.25 \times 60)'$$ $$42.25^{\circ} = 42^{\circ} + 15'$$ #### (ii) 57.325° #### **Solution:** 57.325° As $$1^{\circ} = 60'$$ and $1' = 60''$ $$57.325^{\circ} = 57^{\circ} + 0.325^{\circ}$$ $$57.325^{\circ} = 57^{\circ} + (0.325 \times 60)'$$ $$57.325^{\circ} = 57^{\circ} + 19.5'$$ $$57.325^{\circ} = 57^{\circ} + 19' + 0.5'$$ $$57.325^{\circ} = 57^{\circ} + 19' + (0.5 \times 60)^{"}$$ $$57.325^{\circ} = 57^{\circ} + 19' + 30''$$ $$57.325^{\circ} = 57^{\circ}19'30''$$ #### (iii) 12.9956° #### **Solution:** 12.9956° As $$1^{\circ} = 60'$$ and $1' = 60''$ $$12.9956^{\circ} = 12^{\circ} + 0.9956^{\circ}$$ $$12.9956^{\circ} = 12^{\circ} + (0.9956 \times 60)'$$ $$12.9956^{\circ} = 12^{\circ} + 59.736'$$ $$12.9956^{\circ} = 12^{\circ} + 59' + 0.736'$$ $$12.9956^{\circ} = 12^{\circ} + 59' + (0.736 \times 60)''$$ $$12.9956^{\circ} = 12^{\circ} + 59' + 44.16''$$ $$12.9956^{\circ} = 12^{\circ} + 59' + 44''$$ $$12.9956^{\circ} = 12^{\circ}59'44''$$ #### (iv) 32.625° #### **Solution:** 32.625° As $1^{\circ} = 60'$ and 1' = 60'' $$32.625^{\circ} = 32^{\circ} + 0.625^{\circ}$$ $$32.625^{\circ} = 32^{\circ} + (0.625 \times 60)'$$ $$32.625^{\circ} = 32^{\circ} + 37.5'$$ $$32.625^{\circ} = 32^{\circ} + 37' + 0.5'$$ $$32.625^{\circ} = 32^{\circ} + 37' + (0.5 \times 60)^{"}$$ $$32.625^{\circ} = 32^{\circ} + 37' + 30''$$ $$32.625^{\circ} = 32^{\circ}37'30''$$ # Q3: Convert the following radian measures of angles into the measures of degrees. #### (i) 2 radians #### **Solution:** 2 radians As 1 radian = $$\frac{180^{\circ}}{\pi}$$ Now 2 radians = $$2 \times \frac{180^{\circ}}{\pi}$$ 2 radians = $$2 \times \frac{180^{\circ}}{3.14159}$$ 2 radians = $$2 \times 57.3^{\circ}$$ $$2 \text{ radians} = 114.6^{\circ}$$ # (ii) $\frac{5\pi}{3}$ radians #### **Solution:** $$\frac{5\pi}{3}$$ radians As $$\pi$$ radian = 180° Now $$\frac{5\pi}{3} \text{ radians} = \frac{5}{3} \times 180^{\circ}$$ $$\frac{5\pi}{3} \text{radians} = 5 \times 60^{\circ}$$ $$\frac{5\pi}{3}$$ radians = 300° # (iii) $\frac{\pi}{6}$ radians #### **Solution:** $$\frac{\pi}{6}$$ radians As $$\pi$$ radian = 180° Now $$\frac{\pi}{6}$$ radians = $\frac{180^{\circ}}{6}$
$$\frac{\pi}{6}$$ radians = 30° (iv) $$\frac{-3\pi}{4}$$ radians #### **Unit #7** #### **Solution:** $$\frac{-3\pi}{4}$$ radians As $$\pi$$ radian = 180° Now $$\frac{-3\pi}{4} \text{ radians} = \frac{-3}{4} \times 180^{\circ}$$ $$\frac{-3\pi}{4} \text{ radians} = -3 \times 45^{\circ}$$ $$\frac{-3\pi}{4} \text{ radians} = -135^{\circ}$$ #### Q4: Convert the following angles in terms of radians. #### (i) 45° #### **Solution:** 45° As $$1^{\circ} = \frac{\pi}{180}$$ radians Now $$45^{\circ} = 45 \times \frac{\pi}{180}$$ radians $$45^{\circ} = \frac{\pi}{4}$$ radians #### (ii) 120° #### Solution: 120° As $$1^{\circ} = \frac{\pi}{180}$$ radians Now $$120^{\circ} = 120 \times \frac{\pi}{180} \text{ radians}$$ $$120^{\circ} = 12 \times \frac{\pi}{18}$$ radians $$120^{\circ} = 2 \times \frac{\pi}{3}$$ radians $$120^{\circ} = \frac{2\pi}{3} \text{ radians}$$ #### (iii) -210° #### **Solution**: $$-210^{o}$$ As $$1^o = \frac{\pi}{180}$$ radians Now $$-210^{\circ} = -210 \times \frac{\pi}{180} \text{ radians}$$ $$-210^{\circ} = -21 \times \frac{\pi}{18}$$ radians $$-210^{\circ} = -7 \times \frac{\pi}{6}$$ radians $$-210^{\circ} = \frac{-7\pi}{6}$$ radians #### (iv) 60°35′48 #### **Solution:** 60°35′48" First, we convert it into Decimal form As $$1' = \left(\frac{1}{60}\right)^o$$ and $1'' = \left(\frac{1}{3600}\right)^o$ So 60°35′48" $$=60^{\circ} + \left(35 \times \frac{1}{60}\right)^{\circ} + \left(48 \times \frac{1}{3600}\right)^{\circ}$$ $$=60^{\circ} + 0.58^{\circ} + 0.0133^{\circ}$$ $$= 60.5933^{\circ}$$ Thus $$60^{\circ}35'48'' = 60.5933^{\circ}$$ Now we have 60.5933° As $$1^o = \frac{\pi}{180}$$ radians Now $$60.5933^{\circ} = 60.5993 \times \frac{\pi}{180}$$ radians $$60.5933^{\circ} = 60.5993 \times \frac{3.14159}{180}$$ radians $$60.5933^{\circ} = 60.5993 \times 0.0175 \text{ radians}$$ $$60.5933^{\circ} = 1.06 \text{ radians}$$ #### Exercise 7.2 #### Sector of a circle #### Length of an arc of circle Consider a circle with "O" and radius r, which subtends an angle θ radians at the center O. Let \widehat{AB} is the minor arc of the circle whose length is equal to l as shown in figure. Now Radian = $$\frac{length\ of\ an\ arc\ \widehat{AB}}{radius\ of\ circle}$$ $\theta = \frac{l}{r}$ $Or\ l = r\ \theta$ #### Example #5: Find the length of an arc of a circle of radius 5 cm which subtends an angle of $\frac{3\pi}{4}$ radians at the centre. #### **Solution:** $$\theta = \frac{3\pi}{4}$$ radians, $r = 5$ cm #### To Find: l = ? As we have #### **Unit #7** $l = r \theta$ Put the values $$l = 5 \left(\frac{3\pi}{4}\right)$$ $$l = \frac{15\pi}{4}$$ $$l = \frac{15(3.14159)}{4}$$ $$l = \frac{47.12}{4}$$ $$l = 11.78 cm$$ #### Example # 6: Find the distance travelled by a cyclist moving on a circle of radius 15 m, if he makes 3.5 revolutions. #### **Solution:** $r = 15 \, m$ As 1 revolution = 2π *radins* $3.5 \text{ revolutions} = 3.5 \times 2\pi \text{ radins}$ $3.5 \text{ revolutions} = 7\pi \text{ radins}$ #### To Find: Distance travelled = l = ? As we have $$l = r \theta$$ Put the values $$l = 15 \times 7\pi$$ $$l = 105 \, \pi \, \text{m}$$ #### Example # 7: An arc of length 2.5 cm of a circle subtends an angle θ at the centre O of diameter 6 cm. find the value of θ Solution: $$l = 2.5$$ cm, As Diameter $$= 6 \text{ cm}$$ Then $$r = \frac{d}{2} = \frac{6}{2} = 3 \text{ cm}$$ #### To Find: $$\theta = ?$$ As we have $$l = r \theta$$ Put the values $$2.5 = 3 \theta$$ Divide B. S by 3 $$\frac{2.5}{2} = \frac{3 \theta}{2}$$ $$0.833 = \theta$$ $$\theta = 0.833 \, radians$$ #### Example #8: #### **Unit #7** If length of an arc of a circle is 5 cm which subtends an angle of measure 60° , find the radius of the circle. #### **Solution**: $\theta = 60^{\circ}$, r = 5 cm #### To Find: r = ? First, we convert degree to radians As $$1^{\circ} = \frac{\pi}{180}$$ radians Now $$60^o = 60 \times \frac{\pi}{180} \text{ radians}$$ $$60^{\circ} = 6 \times \frac{\pi}{18}$$ radians $$60^{\circ} = \frac{\pi}{3}$$ radians Thus $$\theta = \frac{\pi}{3}$$ radians Now we have $$l = r \theta$$ #### Put the values $$5 = r \times \frac{\pi}{3}$$ Multiply B. S by $\frac{3}{\pi}$ $$5 \times \frac{3}{\pi} = r \times \frac{\pi}{3} \times \frac{3}{\pi}$$ $$\frac{15}{\pi} = r$$ 15 $$\frac{15}{3.14159} =$$ $$4.77 = r$$ r = 4.77 cm #### Area of sector Consider a circle of radius r with centre O, PQ as an arc which subtends an angle θ radians at the centre as shown in figure. By Proportion $$\frac{\text{Area of sector POQ}}{\pi r^2} = \frac{\theta}{2\pi}$$ Area of sector POQ = $\frac{\theta}{2\pi} \times \pi r^2$ Area of sector POQ = $\frac{1}{2}r^2\theta$ Thus Area $$=\frac{1}{2}r^2\theta$$ **Example # 9:** Find the area of sector with central angle of 60° in a circular region whose radius is 5 cm. #### **Solution:** Given that: $$r = 5 \text{ m}, \qquad \theta = 60^{\circ}$$ #### To Find: Area of sector = A = ? First, we convert degree to radians As $$1^o = \frac{\pi}{180}$$ radians Now $$60^{\circ} = 60 \times \frac{\pi}{180}$$ radians $$60^{\circ} = 6 \times \frac{\pi}{18}$$ radians $$60^{\circ} = \frac{\pi}{3} \text{ radians}$$ Thus $$\theta = \frac{\pi}{3}$$ radians Now we have Area of sector $$=\frac{1}{2}r^2\theta$$ Put the values Area of sector $$=\frac{1}{2}(5)^2 \left(\frac{\pi}{3}\right)$$ Area of sector = $$\frac{1}{2}$$ (25) $\left(\frac{3.14159}{3}\right)$ Area of sector = $$\frac{1}{2}$$ (25)(1.047) Area of sector = $\frac{1}{2}$ (26.175) Area of sector = 13.09 cm² #### Exercise # 7.2 #### Page # 171 Q1: Find $oldsymbol{l}$ when (i) $$\theta = \frac{\pi}{6}$$ radians, $r = 2$ cm **Solution:** $$\theta = \frac{\pi}{6}$$ radians, $r = 2$ cm To Find: l = ? As we have $l = r \theta$ Put the values $$l=2\,\left(\frac{\pi}{6}\right)$$ $$l = \frac{3.14159}{2}$$ l = 1.047 cm #### t = 1.047 tm (ii) $$\theta = 30^{\circ}$$, $r = 6 \text{ cm}$ #### **Solution:** $$\theta = 30^{\circ}$$, $r = 6 \text{ cm}$ #### To Find: $$l = ?$$ First, we convert degree to radians As $$1^{\circ} = \frac{\pi}{180}$$ radians Now $$30^{\circ} = 30 \times \frac{\pi}{180}$$ radians $$30^{\circ} = 3 \times \frac{\pi}{18}$$ radians $$30^{\circ} = \frac{\pi}{6}$$ radians Thus $$\theta = \frac{\pi}{6}$$ radians Now we have $$l = r \theta$$ #### Put the values $$l = 6\left(\frac{\pi}{6}\right)$$ $$l = \pi \text{cm}$$ $$l = 3.14159 \text{ cm}$$ # (iii) $\theta = \frac{4\pi}{6}$ radians, r = 6 cm #### **Solution:** $$\theta = \frac{4\pi}{6}$$ radians, $r = 6$ cm #### To Find: $$l = ?$$ As we have $$l = r \theta$$ Put the values $$l = 6\left(\frac{4\pi}{6}\right)$$ $$l = 4\pi$$ $$l = 4(3.14159)$$ $$l = 12.57 \text{ cm}$$ #### Q2: Find θ when (i) $$l = 5$$ cm, $r = 2$ cm #### **Solution:** $$l = 5 \text{cm}$$, $r = 2 \text{ cm}$ #### To Find: $$\theta = ?$$ As we have $$l = r \theta$$ #### **Unit # 7** #### Put the values $$5 = 2 \theta$$ #### Divide B. S by 2 $$\frac{5}{2} = \frac{2\theta}{2}$$ $$2.5 = \theta$$ $$\theta = 2.5 \ radians$$ #### (ii) l = 30 cm, r = 6 cm #### **Solution:** $$l = 30$$ cm, $r = 6$ cm #### To Find: $$\theta = ?$$ $$l = r \theta$$ #### Put the values $$30 = 6 \theta$$ $$\frac{30}{6} = \frac{6\theta}{6}$$ $$5 = \theta$$ $$\theta = 5 radians$$ (iii) $$l = 6$$ cm, $r = 2.87$ cm #### **Solution:** $$l = 6$$ cm, $r = 2.87$ cm #### To Find: $$\theta = ?$$ $$l = r \theta$$ Put the values $$6 = 2.87 \theta$$ Divide B. S by 2.87 $$\frac{6}{2.87} = \frac{2.87 \ \theta}{2.87}$$ $$2.091 = \theta$$ $$\theta = 2.091 \, radians$$ #### Q3: Find r when (i) $$\theta = \frac{\pi}{6}$$ radians, $l = 2$ cm #### **Solution:** $$\theta = \frac{\pi}{6}$$ radians, $l = 2$ cm #### To Find: $$r = ?$$ $$l = r \theta$$ $$2 = r \times \frac{\pi}{6}$$ Multiply B. S by $$\frac{6}{\pi}$$ $$2 \times \frac{6}{\pi} = r \times \frac{\pi}{6} \times \frac{6}{\pi}$$ $$\frac{12}{\pi} = r$$ $$\frac{12}{3.14159} = r$$ $$3.82 = r$$ $$r = 3.82 \text{ cm}$$ (ii) $$\theta = 3\frac{1}{2}$$ radians, $l = \frac{4}{7}$ m #### **Solution:** $$\theta = 3\frac{1}{2}$$ radians, $l = \frac{4}{7}$ m $$\theta = \frac{7}{2}$$ radians, $l = \frac{4}{7}$ m #### To Find: $$r = ?$$ As we have $$l = r \theta$$ Put the values $$\frac{4}{7} = r \times \frac{7}{2}$$ Multiply B. S by $\frac{2}{7}$ $$\frac{4}{7} \times \frac{2}{7} = r \times \frac{7}{2} \times \frac{2}{7}$$ $$\frac{8}{49} = r$$ $$0.16 = r$$ $$r = 0.16 \text{ cm}$$ #### (iii) $\theta = \frac{3\pi}{4}$ radians, l = 15 cm #### **Solution:** $$\theta = \frac{3\pi}{4}$$ radians, $l = 15$ cm #### To Find: $$r = ?$$ As we have $$l = r \theta$$ Put the values $$15 = r \times \frac{3\pi}{4}$$ Multiply B. S by $$\frac{4}{3\pi}$$ $$15 \times \frac{4}{3\pi} = r \times \frac{3\pi}{4} \times \frac{4}{3\pi}$$ #### **Unit # 7** $$5 \times \frac{4}{\pi} = 1$$ $$\frac{20}{\pi} = r$$ $$\frac{20}{3.14159} = i$$ $$6.366 = r$$ $$6.366 = r$$ $r = 6.366 \text{ cm}$ #### Q4: Find the area of sector whose radius is 4 m, with central angle 12 radian. #### **Solution:** Given that: $$r = 4 \text{ m}$$, $\theta = 12 \text{ radians}$ #### To Find: Area of sector = A = ? As we have Area of sector = $$\frac{1}{2}r^2\theta$$ Put the values Area of sector = $$\frac{1}{2}(4)^2(12)$$ Area of sector = $$\frac{1}{2}$$ (16)(12) Area of sector = (8)(12) Area of sector = $$96 \text{ m}^2$$ #### Q5: The arc of a circle subtends an angle of 30° at the centre. The radius of a circle is 5 cm. find; - (i) Length of the arc - (ii) Area of sector formed. #### **Solution:** #### **Length of the arc** $$r = 5 \text{ m}, \qquad \theta = 30^{\circ}$$ #### To Find: $$l = ?$$ First, we convert degree to radians As $$1^{\circ} = \frac{\pi}{180}$$ radians $$30^{\circ} = 30 \times \frac{\pi}{180}$$ radians $$30^{\circ} = \frac{\pi}{6}$$ radians Thus $$\theta = \frac{\pi}{6}$$ radians Now we have $$l = r \theta$$ Put the values $$l = 5\left(\frac{\pi}{6}\right)$$ $$l = 5\left(\frac{3.14159}{6}\right)$$ $$l = 5(0.524)$$ #### Area of sector formed Given that: l = 2.62 cm $$r = 5 \text{ m}, \qquad \theta = 30^{\circ} =
\frac{\pi}{6} \text{ radians}$$ #### To Find: Area of sector = $$A = ?$$ As we have Area of sector $$=\frac{1}{2}r^2\theta$$ Put the values Area of sector $$=$$ $\frac{1}{2}(5)^2 \left(\frac{\pi}{6}\right)$ Area of sector $=$ $\frac{1}{2}(25) \left(\frac{3.14159}{6}\right)$ Area of sector $=$ $\frac{1}{2}(25)(0.524)$ Area of sector = $$\frac{1}{2}$$ (13.1) Area of sector = $$6.55 \text{ cm}^2$$ Q6: An arc of a circle subtends an angle of 2 radian at the centre. If area of sector formed is 64 cm². Find the radius of circle. #### **Solution:** Given that: $\theta = 12 \text{ radian}$ Area of sector = 64 cm^2 #### To Find: $$r = ?$$ As we have Area of sector $$=\frac{1}{2}r^2\theta$$ Put the values $$64 = \frac{1}{2}r^2(2)$$ $$64 = r^2$$ $$r^2 = 64$$ Taking Square root on B. S $$\sqrt{r^2} = \sqrt{64}$$ $$r = 8 cm$$ Q7: In a circle of radius 10m, find the distance travelled by a point moving on this circle if the point makes 3.5 revolutions. $$(3.5 \text{ revolutions} = 7\pi)$$ Solution: #### **Unit #7** $$r = 10 \, m$$ $$\theta = 3.5 \text{ revolutions} = 7\pi$$ #### To Find Distance travelled = l = ? As we have $$l = r \theta$$ Put the values $$l = 10 \times 7\pi$$ $$l = 70 \pi \mathrm{m}$$ # Q8: What is the circle measure of the angle between the hands of the watch at 3 o'clock? #### **Solution:** Since one complete rotaion = 360° As 3 o'clock shows = $$\frac{1}{4}$$ of complete rotation So 3 o'clock = $$\frac{1}{4} \times 360^{\circ}$$ So $$3 \text{ o'clock} = 90^{\circ}$$ Hence 3 o'clock = $$90^{\circ} = \frac{\pi}{2} \ radian$$ #### Q9: What is the length of the arc APB? #### Solution: $$r = 8 cm$$ #### To Find: $$l = ?$$ From the figure $$\theta = 90^{\circ} = \frac{\pi}{2} \ radian$$ As we have $$l = r \theta$$ Put the values $$l = 8 \times \frac{\pi}{2}$$ $$l = 4 \pi c m$$ #### Q10: Find the area of sector OPR. #### **Solution**: From the figure $$r = 6 \text{ m}, \qquad \theta = 60^{\circ}$$ #### To Find: Area of sector = A = ? First, we convert degree to radians As $$1^{\circ} = \frac{\pi}{180}$$ radians Now $$60^{\circ} = 60 \times \frac{\pi}{180}$$ radians $$60^{o} = \frac{\pi}{3}$$ radians Thus $$\theta = \frac{\pi}{3}$$ radians Now we have Area of sector $$=\frac{1}{2}r^2\theta$$ Put the values Area of sector = $$\frac{1}{2}(6)^2 \left(\frac{\pi}{3}\right)$$ Area of sector = $$\frac{1}{2}$$ (36) $\left(\frac{\pi}{3}\right)$ Area of sector = $$(18) \left(\frac{\pi}{3}\right)$$ Area of sector = 6π cm² #### Ex # 7.3 #### The General Angle (Coterminal Angles) Angles having the same initial and terminal sides are called coterminal angles, and they differ by a multiple of 2π radians or $360^{\rm o}$. They are also called general angles. Let $$\theta = 30^{\circ}$$ Then $$30^{\circ} + 360^{\circ} = 390^{\circ}$$ And $$30^{\circ} - 360^{\circ} = -330^{\circ}$$ The coterminal angles of 30° are 390° and -330° #### Angle in standard position In XY – plane, an angle is in standard position if: - ➤ Its vertex is at origin of XY plane - Its initial side lies along the positive x axis. #### Note: - When an angle is positive then it shows anti clock wise direction. - When an angle is negative then it shows clock wise direction. In the given figure An angle of measure 45° shows anti – clock wise direction while -45° shows clock wise direction. #### **Unit #7** #### Quadrants The Cartesian plane is divided into four quadrants and the angle $\boldsymbol{\theta}$ is said to be in that quadrant where OP lies. #### **Quadrantal Angles** Quadrantal angles are those angles whose terminal sides coincide with co – ordinate axis i.e., x – axis or y – axis. The Quadrantal measure of angles are 0° , 90° , 180° , 270° and 360° or $$0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \text{ and } 2\pi$$ #### Exercise # 7.3 #### Page # 174 Q1: Find coterminal angles of the following angles. (i) 55° #### **Solution:** 55° $$As 55^{\circ} + 360^{\circ} = 415^{\circ}$$ And $$55^{\circ} - 360^{\circ} = -305^{\circ}$$ The coterminal angles of 55° are 415° and -305° $$(ii) -45^{\circ}$$ #### **Solution:** $$-45^{\circ}$$ $$As -45^{\circ} + 360^{\circ} = 315^{\circ}$$ And $$-45^{\circ} - 360^{\circ} = -405^{\circ}$$ The coterminal angles of -45° are 315° and -405° (iii) $$\frac{\pi}{6}$$ #### **Solution:** $$\frac{\pi}{6}$$ As $$\frac{\pi}{6} + 2\pi = \frac{\pi + 12\pi}{6} = \frac{13\pi}{6}$$ And $$\frac{\pi}{6} - 2\pi = \frac{\pi - 12\pi}{6} = \frac{-11\pi}{6}$$ The coterminal angles of $\frac{\pi}{6}$ are $\frac{13\pi}{6}$ and $\frac{-11\pi}{6}$ (iv) $$\frac{-3\pi}{4}$$ #### **Solution:** $$\frac{-3\pi}{4}$$ **As** $$\frac{-3\pi}{4} + 2\pi = \frac{-3\pi + 8\pi}{4} = \frac{5\pi}{5}$$ And $$\frac{-3\pi}{4} - 2\pi = \frac{-3\pi - 8\pi}{6} = \frac{-11\pi}{6}$$ The coterminal angles of $\frac{-3\pi}{4}$ are $\frac{5\pi}{6}$ and $\frac{-11\pi}{6}$ #### Q2: State the quadrant in which the following angles #### lie? (i) $$\frac{8\pi}{5}$$ #### **Solution:** $$\frac{8\pi}{5}$$ As $$\pi$$ radian = 180° $$\frac{8\pi}{5} = \frac{8 \times 180^{\circ}}{5}$$ #### **Unit #7** $$\frac{8\pi}{5} = 8 \times 36^{\circ}$$ $$\frac{8\pi}{5} = 288^{\circ}$$ Thus $\frac{8\pi}{5}$ lies in 2nd Quadrant #### (ii) 75° #### **Solution:** 75° Thus 75° lies in 1st Quadrant (iii) $$-818^{\circ}$$ #### **Solution:** $$As -818^{\circ} = -2(360^{\circ}) - 98^{\circ}$$ As -818° is negative so in anti – clock direction Thus -98° lies in 3rd Quadrant (iv) $$\frac{-5\pi}{4}$$ #### **Solution:** $$-5\pi$$ $$-5\pi$$ _ $-5 \times 180^{\circ}$ $$\frac{-5\pi}{4} = -5 \times 45^{\circ}$$ $$\frac{-5\pi}{4} = -225^{\circ}$$ As $-225^{\rm o}$ is negative so in anti – clock direction Thus -225° lies in 2nd Quadrant #### 103° #### **Solution:** 103° Thus 103° lies in 2nd Quadrant #### Ex # 7.4 #### **Trigonometric Ratios** #### Hypotenuse The side opposite to 90° is called hypotenuse. #### Perpendicular The side opposite to $\boldsymbol{\theta}$ or angle in consideration is called perpendicular or opposite side. #### Base The side adjacent to $\boldsymbol{\theta}$ or angle in consideration is called base or adjacent side. #### **Unit #7** #### **Reciprocal Identities** $$\sin \theta = \frac{1}{\cos e c \, \theta} \quad or \quad \csc \theta = \frac{1}{\sin \theta}$$ $$\cos \theta = \frac{1}{\sec \theta} \quad or \quad \sec \theta = \frac{1}{\cos \theta}$$ $$\tan \theta = \frac{1}{\cot \theta} \quad or \quad \cot \theta = \frac{1}{\tan \theta}$$ #### **Trigonometric Ratios** A trigonometric ratio is a ratio of lengths of two sides in a right triangle. Trigonometric ratios are used to find the measure of a side or an acute angle in a right-angled triangle. The trigonometric ratios for any acute angle of a rightangled triangle are given: #### **Trick to remember Trigonometric Formulas** #### Trigonometric Ratios with the help of a unit circle Consider a circle with centre O and radius 1 (unit circle). P(x, y) is any point on the circle. Radius \overline{OP} makes an angle θ . Draw \overline{PA} on x – axis to form OAP a right-angled triangle with $\angle A = 90^\circ$ In the figure Perpendicular $$\overline{AP} = y$$ Base $$\overline{OA} = x$$ Hypotenuse $$\overline{OP} = 1$$ $$\sin \theta = \frac{perp}{hyp} = \frac{\overline{AP}}{\overline{OP}} = \frac{y}{1} = y$$ $$\cos \theta = \frac{base}{hyp} = \frac{\overline{OA}}{\overline{OP}} = \frac{x}{1} = x$$ $$\tan \theta = \frac{perp}{base} = \frac{\overline{AP}}{\overline{OA}} = \frac{y}{x}$$ Thus, trigonometric ratios of unit circle are $$\sin \theta = y$$ $$\cos \theta = x$$ $$\tan \theta = \frac{y}{x}$$ Reciprocal trigonometric ratios $$cosec \ \theta = \frac{1}{y}$$ $$\sec \theta = \frac{1}{x}$$ $$\cot \theta = \frac{x}{1}$$ | θ | 30° | 45° | 60° | |-------|----------------|-------------------------|---------------| | sin θ | 1 | 1 | $\sqrt{3}$ | | | $\overline{2}$ | $\sqrt{2}$ | $\frac{1}{2}$ | | cosθ | $\sqrt{3}$ | \bigcirc 1 \bigcirc | 1 | | Ox | 2 | $\sqrt{2}$ | $\frac{1}{2}$ | | tan θ | 1 | | _ | | | 1/2 | 1 | $\sqrt{3}$ | | | γ3 | | | Signs of Trigonometric Ratios in Different Quadrants. P(x, y) X https://tehkals.com #### Trick to remember Signs of Trigonometric Ratios # **6** #### **ASTC Add Sugar To Coffee** Example # 11: Find the signs of the following trigonometric ratios and tell in which quadrant the lie? #### (i) $\sin 105^{\circ}$ #### **Solution:** $\sin 105^{\circ}$ Since 105° lies in 2nd Quadrant. As $\sin \theta$ is positive in 2nd Quadrant. So $\sin 105^{\circ}$ is positive in 2^{nd} Quadrant. (ii) $$\tan \frac{-5\pi}{6}$$ #### **Solution:** $$\tan \frac{-5\pi}{6}$$ First convert into degree As π radian = 180° Now $$\frac{-5\pi}{6} \text{ radians} = \frac{-5}{6} \times 180^{\circ}$$ $$\frac{-3\pi}{4} \text{ radians} = -5 \times 30^{\circ}$$ $$\frac{-5\pi}{6} \text{ radians} = -150^{\circ}$$ As θ is negative which shows clock wise direction. #### **Unit #7** Since -150° lies in 2^{nd} Quadrant. As $\tan \theta$ is positive in 3rd Quadrant. So $\tan \frac{-5\pi}{6}$ is positive in 3rd Quadrant. #### (iii) sec 1030° #### **Solution:** sec 1030° $As 1030^{\circ} = 2(360^{\circ}) + 310^{\circ}$ Since 310° lies in 4th Quadrant. As $\cos \theta$ and $\sec \theta$ are positive in 4th Quadrant. So $\sec 1030^{\circ}$ is positive in 4th Quadrant. #### (iv) cot 710° #### **Solution:** cot 710° $As 710^{\circ} = 360^{\circ} + 350^{\circ}$ Since 350^{o} lies in 4^{th} Quadrant. As $\tan \theta$ and $\cot \theta$ are negative in 4th Quadrant. So sec 1030° is negative in 4th Quadrant. Example # 13: If $\tan \theta = 1$, find the other trigonometric ratios, when θ lies in first quadrant. #### **Solution:** As $\tan \theta = 1$ and θ lies in 1st quadrant. Here x = Base, r = hyp, y = perp $$\tan \theta = \frac{perp}{base} = \frac{y}{x} = \frac{1}{1}$$ So y = 1
and x = 1By Pythagoras Theorem $(r)^2 = (x)^2 + (y)^2$ $$(r)^2 = (1)^2 + (1)^2$$ $(r)^2 = 1 + 1$ $$(r)^2 = 2$$ $$\sqrt{(r)^2} = \sqrt{2}$$ $r = \sqrt{2}$ Now the other Trigonometric Ratios are $$\sin\theta = \frac{y}{r} = \frac{1}{\sqrt{2}}$$ $$\csc\theta = \frac{r}{y} = \frac{\sqrt{2}}{1} = \sqrt{2}$$ $$\cos\theta = \frac{x}{r} = \frac{1}{\sqrt{2}}$$ $$\sec \theta = \frac{r}{x} = \frac{\sqrt{2}}{1} = \sqrt{2}$$ $$\tan\theta = \frac{y}{x} = \frac{1}{1} = 1$$ $$\cot \theta = \frac{x}{y} = \frac{1}{1} = 1$$ ## Example # 14: If $\tan\theta=-\frac{2}{3}$ and θ lies in 2nd quadrant. #### Find the other trigonometric ratios #### **Solution:** As $\tan \theta = \frac{-2}{3}$ and θ lies in 2nd quadrant. Here $$x = Base, r = hyp, y = perp$$ As θ lies in 2nd quadrant then x = -3 $$\tan \theta = \frac{perp}{base} = \frac{y}{x} = \frac{2}{-3}$$ So $$y = 2$$ and $x = -3$ Now by Pythagoras Theorem $$(r)^2 = (x)^2 + (y)^2$$ $$(r)^2 = (-2)^2 + (3)^2$$ $$(r)^2 = 4 + 9$$ $$(r)^2 = 13$$ $$\sqrt{(r)^2} = \sqrt{13}$$ $$r = \sqrt{13}$$ Now the other Trigonometric Ratios are $$\sin \theta = \frac{y}{r} = \frac{2}{\sqrt{13}}$$ $$\csc \theta = \frac{r}{y} = \frac{\sqrt{13}}{2}$$ $$\cos \theta = \frac{x}{r} = \frac{-3}{\sqrt{13}}$$ $$\sec \theta = \frac{r}{x} = \frac{\sqrt{13}}{-3}$$ $$\tan \theta = \frac{y}{x} = \frac{2}{-3}$$ $$\cot \theta = \frac{x}{y} = \frac{-3}{2}$$ ## Example # 15: If $\cos\theta = \frac{4}{5}$ and θ lies in 4th quadrant. #### Find the other trigonometric ratios #### **Solution:** As $\cos\theta = \frac{4}{5}$ and θ lies in 4th quadrant. Here $$x = Base, r = hyp, y = perp$$ $$\cos \theta = \frac{base}{hvp} = \frac{x}{r} = \frac{4}{5}$$ So $$x = 4$$ and $r = 5$ Now by Pythagoras Theorem $$(x)^2 + (y)^2 = (r)^2$$ $$(4)^2 + (y)^2 = (5)^2$$ $$16 + (y)^2 = 25$$ #### **Unit #7** $$(y)^2 = 25 - 16$$ $$(y)^2 = 9$$ $$\sqrt{(y)^2} = \pm \sqrt{9}$$ $$y = \pm 3$$ As θ lies in 4th quadrant then $$y = -3$$ Now the other Trigonometric Ratios are $$\sin \theta = \frac{y}{r} = \frac{-3}{5}$$ $$\csc \theta = \frac{r}{-3} = \frac{5}{5}$$ $$\csc \theta = \frac{1}{y} = \frac{1}{-3}$$ $$\cos \theta = \frac{x}{r} = \frac{4}{5} \qquad \qquad X'$$ $$\sec \theta = \frac{r}{x} = \frac{5}{4}$$ $$\tan\theta = \frac{y}{x} = \frac{-3}{4}$$ $$\cot \theta = \frac{x}{y} = \frac{4}{-3}$$ #### **Trigonometric Ratios of Quadrantal Angles** #### Trigonometric Ratios of 00 #### Solution: #### To find: Trigonometric ratios of 0°. Here the terminal side $\overline{\mathit{OP}}$ of an angle θ coincides with $$\overrightarrow{OX}$$. Thus $$\overline{OP} = r = x$$ or $$x = r$$ and $v = 0$ #### Now $$\sin(0^{\circ}) = \frac{y}{r} = \frac{0}{r} = 0$$ $$cosec(0^{\circ}) = \frac{r}{v} = \frac{r}{0} = Undefined$$ $$\cos(0^{\circ}) = \frac{x}{r} = \frac{r}{r} = 1$$ $$\sec(0^{\circ}) = \frac{r}{x} = \frac{r}{r} = 1$$ $$\tan(0^{\circ}) = \frac{y}{x} = \frac{0}{r} = 0$$ $$\cot(0^{\circ}) = \frac{x}{y} = \frac{r}{0} = Undefined$$ #### Trigonometric Ratios of 90⁰ #### **Solution:** #### To find: Trigonometric ratios of 90° #### **Unit #7** Here the terminal side \overline{OP} of an angle θ coincides with $$\overrightarrow{OY}$$ in anti – clock wise direction. Thus $$\overline{\mathit{OP}} = r = y$$ or $$y = r$$ and $x = 0$ Now $$\sin(90^{\circ}) = \frac{y}{r} = \frac{r}{r} = 1 \stackrel{x'}{\longleftarrow}$$ $$\csc(90^{\circ}) = \frac{r}{y} = \frac{r}{r} = 1$$ $$\cos(90^{\circ}) = \frac{x}{r} = \frac{0}{r} = 0$$ $$\sec(90^{\circ}) = \frac{\dot{r}}{x} = \frac{\dot{r}}{0} = Undefined$$ $$\tan(90^{\circ}) = \frac{y}{x} = \frac{r}{0} = Undefined$$ $$\cot(90^{\circ}) = \frac{x}{y} = \frac{0}{r} = 0$$ #### Trigonometric Ratios of 180⁰ #### **Solution:** #### To find: Trigonometric ratios of 180°. Here the terminal side \overline{OP} of an angle θ coincides with 180° $$\overrightarrow{OX'}$$ in anti – clock wise direction. Thus $$\overline{OP} = r = -x$$ or $$x = -r$$ and $y = 0$ Now Now $$\sin(180^{\circ}) = \frac{y}{r} = \frac{0}{r} = 0$$ $$\cos(180^{\circ}) = \frac{r}{y} = \frac{r}{0} = Undefined$$ $$\cos(180^{\circ}) = \frac{x}{r} = \frac{-r}{r} = -1$$ $$\sec(180^{\circ}) = \frac{r}{r} = \frac{r}{r} = -1$$ $$\sec(180^{\circ}) = \frac{r}{r} = \frac{r}{-r} = -1$$ $$\tan(180^{\circ}) = \frac{y}{x} = \frac{0}{-r} = 0$$ $$\cot(180^{\circ}) = \frac{x}{y} = \frac{-r}{0} = Undefined$$ #### Trigonometric Ratios of 270⁰ #### **Solution:** #### To find: Trigonometric ratios of 270° Here the terminal side \overline{OP} of an angle θ coincides with $\overrightarrow{OY'}$ in anti – clock wise direction. Thus $$\overline{\mathit{OP}} = r = -y$$ or $$y = -r$$ and $x = 0$ Now $$\sin(270^{\circ}) = \frac{y}{r} = \frac{-r}{r} = -1$$ $$\csc(270^{\circ}) = \frac{r}{y} = \frac{r}{-r} = -1$$ $$\cos(270^{\circ}) = \frac{x}{r} = \frac{0}{r} = 0$$ $$\sec(270^{\circ}) = \frac{r}{x} = \frac{r}{0} = Undefined$$ $$\tan(270^{\circ}) = \frac{y}{x} = \frac{-r}{0} = Undefined$$ $$\cot(270^{\circ}) = \frac{x}{y} = \frac{0}{-r} = 0$$ #### Trigonometric Ratios of 360⁰ #### **Solution:** #### To find: Trigonometric ratios of 3600°. Here the terminal side \overline{OP} of an angle θ coincides with $$\overrightarrow{OX}$$ in anti – clock wise direction. Thus $\overrightarrow{OP} = r = x$ or $$x = r$$ and $y = 0$ Now $$\sin(360^{\circ}) = \frac{y}{r} = \frac{0}{r} = 0$$ $$\cos(360^{\circ}) = \frac{r}{y} = \frac{r}{0} = Undefined$$ $$\cos(360^{\circ}) = \frac{x}{r} = \frac{r}{r} = 1$$ $$\sec(360^{\circ}) = \frac{r}{r} = \frac{r}{r} = 1$$ $$\sec(360^{\circ}) = \frac{r}{x} = \frac{r}{r} = 1$$ $$\tan(360^{\circ}) = \frac{y}{x} = \frac{0}{r} = 0$$ $$\cot(360^{\circ}) = \frac{x}{x} - \frac{r}{r} = 0$$ $$\cot(360^{\circ}) = \frac{x}{y} = \frac{r}{0} = Undefined$$ #### Exercise # 7.4 #### Page # 183 Q1: Find the signs of the following trigonometric ratios and tell in which quadrant the lie? #### (i) $\sin 98^{\circ}$ #### **Solution:** sin 98° Since 98° lies in 2nd Quadrant. As $\sin \theta$ is positive in 2nd Quadrant. So sin 98° is positive in 2nd Quadrant. #### (ii) sin 160° #### **Solution:** $\sin 160^{\circ}$ Since 160° lies in 2nd Quadrant. P(0,4) https://tehkals.com As $\sin \theta$ is positive in 2nd Quadrant. So $\sin 160^{\circ}$ is positive in 2^{nd} Quadrant. #### (iii) $\tan 2\overline{00^{\circ}}$ #### **Solution:** tan 200° Since 200° lies in 3rd Quadrant. As $\tan \theta$ is positive in 3rd Quadrant. So tan 200° is positive in 3rd Quadrant. #### (iv) sec 120° #### **Solution:** $sec 120^o$ Since 120° lies in 2nd Quadrant. As $\cos \theta$ and $\sec \theta$ are negative in 2nd Quadrant. So $\sec 120^{\circ}$ is negative in 2^{nd} Quadrant. #### (v) cosec198° #### **Solution:** cosec198° Since 198° lies in 3rdQuadrant. Assin θ and cosec θ are negative in 3rd Quadrant. So cosec198° is negative in 3rd Quadrant. #### (vi) $\sin 460^{\circ}$ #### **Solution:** sin 460° $As 460^{\circ} = 360^{\circ} + 100^{\circ}$ Since 100° lies in 2nd Quadrant. As $\sin \theta$ is positive in 2nd Quadrant. So $\sin 460^{\circ}$ is positive in 2nd Quadrant. #### Q2: Find the trigonometric ratios of the following angles. #### (i) -180° #### **Solution:** -180° #### To find: Trigonometric ratios of -180° . Here the terminal side \overline{OP} of an angle θ coincides with $\overrightarrow{OX'}$ in clock wise direction. Thus $$\overline{OP} = r = -x$$ or $$x = -r$$ and $y = 0$ $$\sin(-180^{\circ}) = \frac{y}{r} = \frac{0}{r} = 0$$ $$\csc(-180^{\circ}) = \frac{r}{y} = \frac{r}{0} = Undefined$$ #### **Unit #7** $$\cos(-180^{\circ}) = \frac{x}{r} = \frac{-r}{r} = -1$$ $$\sec(-180^{\circ}) = \frac{r}{x} = \frac{r}{-r} = -1$$ $$\tan(-180^{\circ}) = \frac{y}{x} = \frac{0}{-r} = 0$$ $$\cot(-180^{\circ}) = \frac{x}{y} = \frac{-r}{0} = Undefined$$ #### **Solution:** -270^{o} #### To find: Trigonometric ratios of -270° Here the terminal side \overline{OP} of an angle θ coincides with \overrightarrow{OY} in clock wise direction. Thus $$\overline{OP} = r = y$$ or $$y = r$$ and $x = 0$ Now $$\sin(-270^{\circ}) = \frac{y}{r} = \frac{r}{r} = 1$$ $$\csc(-270^{\circ}) = \frac{r}{y} = \frac{r}{r} = 1$$ $$\cos(-270^{\circ}) = \frac{x}{x} = \frac{0}{x} = 0$$ $$\sec(-270^{\circ}) = \frac{\dot{r}}{x} = \frac{\dot{r}}{0} = Undefined$$ $$\tan(-270^{\circ}) = \frac{y}{x} = \frac{\dot{r}}{0} = Undefined$$ $$\tan(-270^{\circ}) = \frac{y}{x} = \frac{r}{0} = Undefined$$ $$\cot(-270^{\circ}) = \frac{x}{y} = \frac{0}{r} = 0$$ #### (iii) 720° #### **Solution:** 720° #### To find: Trigonometric ratios of 720° As 720° and 0° have same terminal side. Here the terminal side \overline{OP} of an angle θ coincides with \overrightarrow{OX} in anti – clock wise direction. Thus $$\overline{OP} = r = x$$ or $$x = r$$ and $y = 0$ Now # $\sin(720^{\circ}) = \frac{y}{r} = \frac{0}{r} = 0$ $\csc(720^{\circ}) = \frac{r}{y} = \frac{r}{0} = Undefined$ $\cos(720^{\circ}) = \frac{x}{r} = \frac{r}{r} = 1$ $\sec(720^{\circ}) = \frac{r}{x} = \frac{r}{r} = 1$ $\tan(720^{\circ}) = \frac{y}{x} = \frac{0}{r} = 0$ $\cot(720^{\circ}) = \frac{x}{v} = \frac{r}{0} = Undefined$ #### (iv) 1470° #### **Solution:** 1470° #### To find: Trigonometric ratios of 1470^{o} As $$1470^{\circ} = 4(360^{\circ}) + 30^{\circ}$$ So, we take 30° As 1470^{o} and 30^{o} have same terminal side. Let an equilateral triangle ABC of sides 2 cm. Now draw an angle bisector of $\angle C$ which cuts \overline{AB} at point D. Thus, a right-angled triangle ACD is formed. Hence $m\angle ADC = 90^{\circ}$ and $m\angle ACD = 30^{\circ}$. Also $\overline{AC} = 2cm$ and $\overline{AD} = 1cm$. #### From the figure \overline{AC} is hypotenuse \overline{AD} is perpendicular \overline{AC} is Base By Pythagoras Theorem $$(Perp)^2 + (Base)^2 = (Hyp)^2$$ $$(CD)^2 + (AD)^2 = (AC)^2$$ $$(CD)^2 + (1)^2 = (2)^2$$ $$(CD)^2 + 1 = 4$$ $$(CD)^2 = 4 - 1$$ $$(CD)^2 = 3$$ $$\sqrt{(CD)^2} = \sqrt{3}$$ $$CD = \sqrt{3}$$ Now $$\sin(1470^{\circ}) = \sin
30^{\circ} = \frac{perp}{hyp} = \frac{1}{2}$$ $$\csc(1470^{\circ}) = \csc 30^{\circ} = \frac{hyp}{perp} = \frac{2}{1} = 2$$ $$\cos(1470^{\circ}) = \cos 30^{\circ} = \frac{base}{hyp} = \frac{\sqrt{3}}{2}$$ #### **Unit #7** $$\sec(1470^{\circ}) = \sec 30^{\circ} = \frac{hyp}{base} = \frac{2}{\sqrt{3}}$$ $$\tan(1470^{\circ}) = \tan 30^{\circ} = \frac{perp}{base} = \frac{1}{\sqrt{3}}$$ $$\cot(1470^{\circ}) = \cot 30^{\circ} = \frac{base}{perp} = \frac{\sqrt{3}}{1} = \sqrt{3}$$ # Q2: If $\sec \theta = 2$ where θ lies in 4th quadrant, find the other values of trigonometric ratios #### **Solution:** As $\sec \theta = 2$ and θ lies in 4th quadrant. Here $$x = Base, r = hyp, y = perp$$ $$\sec \theta = \frac{hyp}{base} = \frac{r}{x} = \frac{2}{1}$$ *So* r = 2 *and* x = 1 Now by Pythagoras Theorem $$(x)^2 + (y)^2 = (r)^2$$ $$(1)^2 + (y)^2 = (2)^2$$ $$1 + (y)^2 = 4$$ $$(y)^2 = 4 - 1$$ $$(y)^2 = 3$$ $$\sqrt{(y)^2} = \pm \sqrt{3}$$ $$y = \pm \sqrt{3}$$ As θ lies in 4th quadrant then $$y = -\sqrt{3}$$ Now the other Trigonometric Ratios are $$\sin\theta = \frac{y}{r} = \frac{-\sqrt{3}}{2}$$ $$\csc\theta = \frac{r}{y} = \frac{2}{-\sqrt{3}}$$ $$\cos \theta = \frac{x}{r} = \frac{1}{2}$$ $$\sec \theta = \frac{r}{r} = \frac{2}{1} = 2$$ $$\tan \theta = \frac{y}{x} = \frac{-\sqrt{3}}{1} = -\sqrt{3}$$ $$\cot \theta = \frac{x}{y} = \frac{1}{-\sqrt{3}}$$ Q3: If $\sin \theta = \frac{4}{5}$ and $\frac{\pi}{2} < \theta < \pi$ then find other trigonometric ratios. Solution: As $$\sin \theta = \frac{4}{5}$$ $$Also \frac{\pi}{2} < \theta < \pi = 90^{\circ} < \theta < 180^{\circ}$$ Thus θ lies in 2nd quadrant. Here x = Base, r = hyp, y = perp $$\sin\theta = \frac{perp}{hyp} = \frac{y}{r} = \frac{4}{5}$$ So y = 4 and r = 5 Now by Pythagoras Theorem $$(x)^2 + (y)^2 = (r)^2$$ $$(x)^2 + (4)^2 = (5)^2$$ $$(x)^2 + 16 = 25$$ $$(x)^2 = 25 - 16$$ $$(x)^2 = 9$$ $$\sqrt{(x)^2} = \pm \sqrt{9}$$ $$x = \pm 3$$ As θ lies in 4th quadrant then $$x = -3$$ Now the other Trigonometric Ratios are $$\sin \theta = \frac{y}{r} = \frac{4}{5}$$ $$\csc \theta = \frac{r}{y} = \frac{5}{4}$$ $$\cos \theta = \frac{x}{r} = \frac{-3}{5}$$ $$\sec \theta = \frac{r}{x} = \frac{4}{-3}$$ $$\tan \theta = \frac{y}{x} = \frac{4}{-3} = -\sqrt{3}$$ #### Q5: Find the values of #### (i) $2 \sin 45^{\circ} \cos 45^{\circ}$ #### **Solution:** $2 \sin 45^{\circ} \cos 45^{\circ}$ As $$\sin 45^{\circ} = \frac{1}{\sqrt{2}}$$ and $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$ Now $$2\sin 45^{\circ}\cos 45^{\circ} = 2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)$$ $$2\sin 45^{\circ}\cos 45^{\circ} = 2\left(\frac{1}{\sqrt{2\times 2}}\right)$$ $$2\sin 45^{\circ}\cos 45^{\circ} = 2\left(\frac{1}{2}\right)$$ $$2 \sin 45^{\circ} \cos 45^{\circ} = 1$$ #### $\tan 60^{\circ} - \tan 30^{\circ}$ (ii) $\frac{1}{1 + \tan 60^{\circ} \tan 30^{\circ}}$ #### **Solution:** #### **Unit # 7** $$\tan 60^o - \tan 30^o$$ $$1 + \tan 60^{\circ} \tan 30^{\circ}$$ As $$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$$ and $\tan 60^{\circ} = \sqrt{3}$ Now $$\frac{\tan 60^{\circ} - \tan 30^{\circ}}{1 + \tan 60^{\circ} \tan 30^{\circ}} = \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + (\sqrt{3})(\frac{1}{\sqrt{3}})}$$ $$\frac{\tan 60^{\circ} - \tan 30^{\circ}}{1 + \tan 60^{\circ} \tan 30^{\circ}} = \frac{\frac{\sqrt{3}\sqrt{3} - 1}{\sqrt{3}}}{1 + 1}$$ $$\frac{\tan 60^{\circ} + \tan 30^{\circ}}{1 + \tan 60^{\circ} + \tan 30^{\circ}} = \frac{\frac{(\sqrt{3})^{2} - 1}{\sqrt{3}}}{1 + \tan 60^{\circ} + \tan 30^{\circ}} = \frac{2}{3 - 1}$$ $$\frac{\tan 60^{\circ} - \tan 30^{\circ}}{1 + \tan 60^{\circ} \tan 30^{\circ}} = \frac{3 - 1}{\sqrt{3}} \div 2$$ $$\frac{\tan 60^{\circ} - \tan 30^{\circ}}{1 + \tan 60^{\circ} \tan 30^{\circ}} = \frac{2}{\sqrt{3}} \times \frac{1}{2}$$ $$\frac{\tan 30^{\circ} + \tan 30^{\circ}}{1 + \tan 60^{\circ} + \tan 30^{\circ}} = \frac{1}{\sqrt{3}}$$ ## $\frac{\cos 45^{\circ}}{\sin 45^{\circ} + \tan 45^{\circ}}$ **Solution:** cos 45° $\frac{1}{\sin 45^{\circ} + \tan 45^{\circ}}$ As $$\sin 45^{\circ} = \frac{1}{\sqrt{2}}$$, $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$ and $\tan 45^{\circ} = 1$ Now $$\frac{\cos 45^{\circ}}{\sin 45^{\circ} + \tan 45^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + 1}$$ $$\frac{\cos 45^{\circ}}{\sin 45^{\circ} + \tan 45^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1+\sqrt{2}}{\sqrt{2}}}$$ $$\frac{\cos 45^{\circ}}{\sin 45^{\circ} + \tan 45^{\circ}} = \frac{1}{\sqrt{2}} \div \frac{1 + \sqrt{2}}{\sqrt{2}}$$ $$\cos 45^{\circ} \qquad 1 \qquad \sqrt{2}$$ $$\frac{\cos 45^{\circ}}{\sin 45^{\circ} + \tan 45^{\circ}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{1 + \sqrt{2}}$$ $$\cos 45^{\circ}$$ $$\frac{1}{\sin 45^{\circ} + \tan 45^{\circ}} = \frac{1}{1 + \sqrt{2}}$$ #### (iv) $\tan 30^{\circ} \tan 60^{\circ} + \tan 45^{\circ}$ #### **Solution:** $\tan 30^{\circ} \tan 60^{\circ} + \tan 45^{\circ}$ **Unit #7** As $\tan 30^\circ = \frac{1}{\sqrt{3}}$, $\tan 45^\circ = 1$ and $\tan 60^\circ = \sqrt{3}$ $$\tan 30^{\circ} \tan 60^{\circ} + \tan 45^{\circ} = \left(\frac{1}{\sqrt{3}}\right)(\sqrt{3}) + 1$$ $\tan 30^{\circ} \tan 60^{\circ} + \tan 45^{\circ} = 1 + 1$ $\tan 30^{\circ} \tan 60^{\circ} + \tan 45^{\circ} = 2$ $$\frac{\pi}{(v) \cos \frac{\pi}{3} \cos \frac{\pi}{6} - \sin \frac{\pi}{3} \sin \frac{\pi}{6}}$$ $$\frac{\pi}{\cos\frac{\pi}{3}\cos\frac{\pi}{6} - \sin\frac{\pi}{3}\sin\frac{\pi}{6}}$$ As $$\cos \frac{\pi}{3} = \cos 60^{\circ} = \frac{1}{2}$$ $$\cos\frac{\pi}{6} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$ $$\sin\frac{\pi}{3} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$ $$\sin\frac{\pi}{6} = \sin 30^\circ = \frac{1}{2}$$ $$\cos\frac{\pi}{3}\cos\frac{\pi}{6} - \sin\frac{\pi}{3}\sin\frac{\pi}{6} = \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)$$ $$\cos\frac{\pi}{6}\cos\frac{\pi}{6} - \sin\frac{\pi}{6}\sin\frac{\pi}{6} = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4}$$ $$\cos\frac{\pi}{3}\cos\frac{\pi}{6} - \sin\frac{\pi}{3}\sin\frac{\pi}{6} = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4}$$ $$\cos\frac{\pi}{3}\cos\frac{\pi}{6} - \sin\frac{\pi}{3}\sin\frac{\pi}{6} = 0$$ Q6: In which quadrant θ lies? (i) $\sin \theta > 0$, $\tan \theta > 0$ **Solution:** $\tan \theta > 0$ $\sin \theta > 0$. As $\sin \theta$ and $\tan \theta$ are positive in first quadrant. Thus θ lies in first quadrant. (ii) $\sin \theta < 0$. $\cot \theta > 0$ **Solution:** $\cot \theta > 0$ $\sin \theta < 0$. As $\cot\theta$ is positive and $\sin\theta$ is negative in 3rd quadrant. Thus θ lies in 3^{rd} quadrant. (iii) $\sin \theta > 0$, $\cos \theta < 0$ **Solution:** $\cos \theta < 0$ $\sin \theta > 0$. As $\sin \theta$ is positive and $\cos \theta$ is negative in 2^{nd} quadrant. Thus θ lies in 3^{rd} quadrant. (iv) $\cos \theta > 0$, $cosec \theta < 0$ **Solution:** $\csc \theta < 0$ $\cos \theta > 0$. As $\cos \theta$ is positive and $\csc \theta$ is negative in 4th quadrant. Thus θ lies in 4th quadrant. (v) $\tan \theta < 0$, **Solution:** $\sec \theta > 0$ $\tan \theta < 0$. As $\sec \theta$ is positive and $\tan \theta$ is negative in 4th quadrant. Thus θ lies in 4^{th} quadrant. (vi) $\cos \theta < 0$, $\tan \theta < 0$ **Solution:** $\tan \theta < 0$ $\cos \theta < 0$. As $\cos \theta$ and $\tan \theta$ are negative in 2nd quadrant. Thus θ lies in 2^{nd} quadrant. Q7: For each triangle, find each missing measure to two decimal places. 53° **Solution:** To Find: Perpendicular = r = ? $$As \sin \theta = \frac{perp}{hyp}$$ $$\sin 53^{\circ} = \frac{x}{32}$$ $$0.7986 = \frac{x}{32}$$ $$0.7986 \times 32 = x$$ $$25.56 = x$$ $x = 25.56$ (ii) Solution: To Find: Perpendicular = r = ? $$As \sin\theta = \frac{perp}{hyp}$$ $$\sin 21^{\circ} = \frac{x}{73}$$ $$0.3584 = \frac{x}{73}$$ $$0.3584 \times 73 = x$$ $$26.1632 = x$$ $$x = 26.1632$$ (iii) **Solution:** To Find: Perpendicular = r = ? $$As \tan \theta = \frac{perp}{base}$$ $$\tan 33^{\circ} = \frac{x}{12}$$ $$\tan 33^{\circ} = \frac{x}{12}$$ $$0.6494 = \frac{x}{12}$$ 32 x 19 https://tehkals.com **Unit #7** $$0.6494 \times 12 = x$$ $7.7928 = x$ $x = 7.7928$ Q8: The irregular blue shape in the diagram represents a lake. The distance across the lake "a" is unknown. To find this distance, a surveyor took the measurements shown in the figure. What is the distance across the lake? #### **Solution:** #### To Find: Perpendicular = r = ? $$As \tan \theta = \frac{perp}{base}$$ $$\tan 24^{\circ} = \frac{a}{750}$$ $$0.4452 = \frac{a}{750}$$ $$0.4452 \times 750 = a$$ $$333.9 = a$$ #### Ex # 7.5 #### **Trigonometric Identities** Following are the fundamental trigonometric identities. $$1 + \tan^2 \theta = \sec^2 \theta$$ $$\rightarrow$$ 1 + cot² θ = cosec² θ #### **Proof:** a = 333.9 Consider a right-angled triangle ABC. From the figure $$\sec \theta = \frac{x}{x}$$ $$\tan \theta = \frac{y}{x}$$ $$\cot \theta = \frac{x}{x}$$ Now by Pythagoras theorem $$x^2 + y^2 = r^2 \dots equ(i)$$ Divide equ (i) by r^2 $$\frac{x^2}{r^2} + \frac{y^2}{r^2} = \frac{r^2}{r^2}$$ $$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$ Put the values $$(\cos\theta)^2 + (\sin\theta)^2 = 1$$ $$\cos^2\theta + \sin^2\theta = 1$$ Divide equ (i) by x^2 $$\frac{x^2}{x^2} + \frac{y^2}{x^2} = \frac{r^2}{x^2}$$ $$1 + \left(\frac{y}{x}\right)^2 = \left(\frac{r}{x}\right)^2$$ Put the values $$1 + (\tan \theta)^2 = (\sec \theta)^2$$ $$1 + \tan^2 \theta = \sec^2 \theta$$ Divide equ (i) by y^2 $$\frac{x^2}{y^2} + \frac{y^2}{y^2} = \frac{r^2}{y^2}$$ $$\left(\frac{x}{y}\right)^2 + 1 = \left(\frac{r}{y}\right)^2$$ Put the values $$(\cot \theta)^2 + 1 = (\csc \theta)^2$$ $$\cot^2 \theta + 1 = \csc^2 \theta$$ $$1 + \cot^2 \theta = \csc^2 \theta$$ #### **Trigonom**etric Ratios Memorization $$\sin \theta = \frac{1}{\cos e c \, \theta} \quad or \quad \csc \theta = \frac{1}{\sin \theta}$$ $$\cos \theta = \frac{1}{\sec \theta} \quad or \quad \sec \theta = \frac{1}{\cos \theta}$$ $$\tan \theta = \frac{1}{\cot \theta} \quad or \quad \cot \theta =
\frac{1}{\tan \theta}$$ 1. $$cos^2 \theta + sin^2 \theta = 1$$ $cos^2 \theta = 1 - sin^2 \theta$ $$\sin^2\theta = 1 - \cos^2\theta$$ 2. $$1 + \cot^2 \theta = \csc^2 \theta$$ $\cot^2 \theta = \csc^2 \theta - 1$ 3. $$1 + \tan^2 \theta = \sec^2 \theta$$ $\tan^2 \theta = \sec^2 \theta - 1$ #### Example # 16 # Show that $(\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta$ $$\frac{\overline{\sin \theta + \cos \theta}}{(\sin \theta + \cos \theta)^2} = 1 + 2 \sin \theta \cos \theta$$ L. H. S $$(\sin\theta + \cos\theta)^2$$ $$= \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta$$ As $$sin^2 \theta + cos^2 \theta = 1$$ $$= \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$$ $$= 1 + 2 \sin \theta \cos \theta$$ = R. H. S Hence proved $$(\sin\theta + \cos\theta)^2 = 1 + 2\sin\theta\cos\theta$$ Prove that $\sin \theta = \sqrt{1 - \cos^2 \theta}$ **Solution**: $$\sin\theta = \sqrt{1-\cos^2\theta}$$ R. H. S $$\sqrt{1-\cos^2\theta}$$ $$As 1 - \cos^2 \theta = \sin^2 \theta$$ $$=\sqrt{\sin^2\theta}$$ $$= \sin \theta$$ $$= L. H. S$$ Hence proved $$\sin\theta = \sqrt{1-\cos^2\theta}$$ Example # 17 Prove that $$\sec^2 \theta + \tan^2 \theta = \frac{1 + \sin^2 \theta}{1 - \sin^2 \theta}$$ **Solution:** $$\sec^2\theta + \tan^2\theta = \frac{1 + \sin^2\theta}{1 - \sin^2\theta}$$ L. H. S $$sec^2 \theta + tan^2 \theta$$ As $$\sec \theta = \frac{1}{\cos \theta}$$ And $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $$= \frac{1}{\cos^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta}$$ $$1 + \sin^2 \theta$$ $$=\frac{1+\sin^2\theta}{\cos^2\theta}$$ $$As \cos^2 \theta = 1 - \sin^2 \theta$$ $$= \frac{1 + \sin^2 \theta}{1 - \sin^2 \theta}$$ $$= R. H. S$$ Hence proved $$\sec^2\theta + \tan^2\theta = \frac{1 + \sin^2\theta}{1 - \sin^2\theta}$$ Example # 18 Prove that $$\frac{\sqrt{1-\sin^2\theta}}{\sin\theta} = \cot\theta$$ **Solution:** $$\frac{\frac{}{\sqrt{1-\sin^2\theta}}}{\sin\theta} = \cot\theta$$ L. H. S $$\frac{\sqrt{1-\sin^2\theta}}{\sin\theta}$$ $$As 1 - \sin^2 \theta = \cos^2 \theta$$ **Unit # 7** $$=\frac{\sqrt{\cos^2\theta}}{\sin\theta}$$ $$=\frac{\cos \theta}{\sin \theta}$$ $$= \cot \theta$$ $$= L. H. S$$ Hence proved $$\frac{\sqrt{1-\sin^2\theta}}{\sin\theta}=\cot\theta$$ #### Exercise # 7.5 #### Page # 186 Prove the following trigonometric identities. 1. $$(\sec^2 \theta - 1)\cos^2 \theta = \sin^2 \theta$$ **Solution:** $$(\sec^2\theta - 1)\cos^2\theta = \sin^2\theta$$ L. H. S $$(\sec^2 \theta - 1)\cos^2 \theta$$ $$As \sec^2 \theta - 1 = \tan^2 \theta$$ $$= (\tan^2 \theta) \cos^2 \theta$$ $$= \left(\frac{\sin^2 \theta}{\cos^2 \theta}\right) \cos^2 \theta$$ $$= \sin^2 \theta$$ $$= R. H. S$$ Hence proved $$(\sec^2\theta - 1)\cos^2\theta = \sin^2\theta$$ $$\frac{(\sec \theta - 1)\cos \theta - \sin \theta}{2. \tan \theta + \sec \theta} = \frac{1 + \sin \theta}{\cos \theta}$$ **Solution:** $$\tan \theta + \sec \theta = \frac{1 + \sin \theta}{\cos \theta}$$ L. H. S $\tan \theta + \sec \theta$ As $$\tan \theta = \frac{\sin \theta}{\cos \theta}$$ And $\sec \theta = \frac{1}{\cos \theta}$ $$= \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}$$ $$= \frac{\sin \theta + 1}{\cos \theta}$$ $$1 + \sin \theta$$ = R.H.S Hence proved $$\tan\theta + \sec\theta = \frac{1 + \sin\theta}{\cos\theta}$$ $$3. (\cos \theta - \sin \theta)^2 = 1 - 2 \sin \theta \cos \theta$$ **Solution:** $(\cos\theta - \sin\theta)^2 = 1 - 2\sin\theta\cos\theta$ L.H.S $(\cos\theta - \sin\theta)^2$ $=\cos^2\theta+\sin^2\theta-2\cos\theta\sin\theta$ $As \cos^2\theta + \sin^2\theta = 1$ $= 1 - 2\cos\theta\sin\theta$ = R. H. S Hence proved $(\cos\theta - \sin\theta)^2 = 1 - 2\sin\theta\cos\theta$ 4. $\cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1$ **Solution:** $cos^2 \theta - sin^2 \theta = 2 cos^2 \theta - 1$ L.H.S $\cos^2 \theta - \sin^2 \theta$ As $sin^2 \theta = 1 - cos^2 \theta$ $= \cos^2 \theta - (1 - \cos^2 \theta)$ $= \cos^2 \theta - 1 + \cos^2 \theta$ $= cos^2 \theta . cos^2 \theta - 1$ $= 2 \cos^2 \theta - 1$ = R. H. S Hence proved $\cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1$ 5. $\tan \theta + \cot = \sec \theta \csc \theta$ Solution: $\tan \theta + \cot = \sec \theta \csc \theta$ L. H. S $\tan \theta + \cot$ As $\tan \theta = \frac{\sin \theta}{\cos \theta}$ And $\cot \theta = \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin\theta\sin\theta + \cos\theta\cos\theta}{\cos\theta\sin\theta}$ $=\frac{\sin^2\theta+\cos^2\theta}{\cos\theta\sin\theta}$ As $sin^2 \theta + cos^2 \theta = 1$ $=\frac{1}{\cos\theta\sin\theta}$ $=\frac{1}{\cos\theta}.\frac{1}{\sin\theta}$ As $\frac{1}{\cos \theta} = \sec \theta$ And $\frac{1}{\sin \theta} = \csc \theta$ $= \sec \theta \csc \theta$ = R. H. S Hence proved $\tan \theta + \cot = \sec \theta \csc \theta$ **Unit #7** 6. $\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$ **Solution:** $\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$ L. H. S $\frac{1-\sin\theta}{\cos\theta}$ Multilply and divide by $1 + \sin \theta$ $= \frac{1 - \sin \theta}{\cos \theta} \times \frac{1 + \sin \theta}{1 + \sin \theta}$ $=\frac{1^2-\sin^2\theta}{\cos\theta\,(1+\sin\theta)}$ $=\frac{1-\sin^2\theta}{\cos\theta\,(1+\sin\theta)}$ As $1 - \sin^2 \theta = \cos^2 \theta$ $=\frac{\cos^2\theta}{\cos\theta\,(1+\sin\theta)}$ $=\frac{\cos\theta}{1+\sin\theta}$ = R.H.S Hence proved $\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$ 7. $\sin \theta \sqrt{1 + \tan^2 \theta} = \tan \theta$ **Solution**: $\sin\theta\sqrt{1+\tan^2\theta}=\tan\theta$ L. H. S $\sin\theta\sqrt{1+\tan^2\theta}$ $As 1 + \tan^2 \theta = sec^2 \theta$ $= \sin\theta \sqrt{\sec^2\theta}$ $= \sin \theta \sec \theta$ $=\sin\theta\times\frac{1}{\cos\theta}$ $=\frac{\sin\theta}{}$ $-\frac{1}{\cos\theta}$ $= \tan \theta$ = R.H.S Hence proved $\sin\theta\sqrt{1+\tan^2\theta}=\tan\theta$ 8. $\cos \theta = \sqrt{1 - \sin^2 \theta}$ **Solution:** $\cos\theta = \sqrt{1 - \sin^2\theta}$ R.H.S $\sqrt{1-\sin^2\theta}$ $As 1 - \sin^2 \theta = \cos^2 \theta$ $$=\sqrt{\cos^2\theta}$$ $=\cos\theta$ = L.H.S Hence proved $$\cos\theta = \sqrt{1-\sin^2\theta}$$ 9. $$(1 + \cos \theta)(1 - \cos \theta) = \frac{1}{\csc^2 \theta}$$ #### **Solution:** $$(1 + \cos \theta)(1 - \cos \theta) = \frac{1}{\csc^2 \theta}$$ #### L. H. S $$(1 + \cos \theta)(1 - \cos \theta)$$ $$=1^2-\cos^2\theta$$ $$=1-\cos^2\theta$$ $$As 1 - \cos^2 \theta = \sin^2 \theta$$ $$= \sin^2 \theta$$ $$As \sin^2 \theta = \frac{1}{\cos ec^2 \theta}$$ $$=\frac{1}{\cos e}$$ $$=\frac{1}{\cos^2\theta}$$ $$= R. H. S$$ Hence proved $$(1 + \cos \theta)(1 - \cos \theta) = \frac{1}{\csc^2 \theta}$$ #### $10. \cos x - \cos x \sin^2 x = \cos^3 x$ **Solution:** $$\cos x - \cos x \sin^2 x = \cos^3 x$$ #### L. H. S $$\cos x - \cos x \sin^2 x$$ $$=\cos x (1-\sin^2 x)$$ $$As 1 - \sin^2 x = \cos^2 x$$ $$=\cos x (\cos^2 x)$$ $$=\cos^3 x$$ $$= R. H. S$$ Hence proved $$\cos x - \cos x \sin^2 x = \cos^3 x$$ $$11. \frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2 \csc x$$ #### **Solution:** $$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2\csc x$$ #### L. H. S $$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} \\ = \frac{\sin x \cdot \sin x + (1 + \cos x)(1 + \cos x)}{\sin x (1 + \cos x)}$$ #### **Unit # 7** $$= \frac{\sin^2 x + (1 + \cos x)^2}{\sin x (1 + \cos x)}$$ $$= \frac{\sin^2 x + 1 + \cos^2 x + 2(1)(\cos x)}{\sin x (1 + \cos x)}$$ $$= \frac{\sin^2 x + 1 + \cos^2 x + 2\cos x}{\sin x (1 + \cos x)}$$ $$= \frac{\sin^2 x + \cos^2 x + 1 + 2\cos x}{\sin x (1 + \cos x)}$$ $$As \sin^2 x + \cos^2 x = 1$$ $$= \frac{1+1+2\cos x}{\sin x (1+\cos x)}$$ $$= \frac{2+2\cos x}{\sin x (1+\cos x)}$$ $$= \frac{2(1+\cos x)}{\sin x (1+\cos x)}$$ $$= \frac{2}{\sin x}$$ $$=\frac{-}{\sin x}$$ $$=2\times\frac{1}{\sin x}$$ $$As \frac{1}{\sin x} = \csc x$$ $$= 2cosec x$$ $$= R.H.S$$ Hence proved $$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2\csc x$$ $$12. \quad \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$ #### Solution: $$\frac{\overline{\sin x}}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$ #### L. H. S $$\overline{1 + \cos x}$$ #### Multilply and divide by $1 - \cos x$ $$= \frac{\sin x}{1 + \cos x} \times \frac{1 - \cos x}{1 - \cos x}$$ $$= \frac{\sin x (1 - \cos x)}{(1 + \cos x)(1 - \cos x)}$$ $$= \frac{\sin x (1 - \cos x)}{1 - \cos^2 \theta}$$ $$As \ 1 - \cos^2 \theta = \sin^2 \theta$$ $$= \frac{\sin x (1 - \cos x)}{\sin^2 x}$$ $$= \frac{\sin x (1 - \cos x)}{\sin x \cdot \sin x}$$ $$= \frac{1 - \cos x}{\sin x}$$ #### = R. H. S Hence proved $$\frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$ 13. $$\frac{1}{1+\cos a} + \frac{1}{1-\cos a} = 2 + 2\cot^2 a$$ #### **Solution:** $$\frac{1}{1 + \cos a} + \frac{1}{1 - \cos a} = 2 + 2\cot^2 a$$ #### L. H. S $$\frac{1}{1+\cos a} + \frac{1}{1-\cos a}$$ $$= \frac{1(1-\cos a) + 1(1+\cos a)}{(1+\cos a)(1-\cos a)}$$ $$= \frac{1+1-\cos a + \cos a}{1-\cos^2 a}$$ $$As 1 - \cos^2 a = \sin^2 a$$ $$= \frac{2}{\sin^2 a}$$ $$= 2 \times \frac{1}{\sin^2 a}$$ $$As \ \frac{1}{\sin^2 a} = \csc^2 a$$ $$= 2 \cos ec^2 a$$ $$As \ cosec^2 a = 1 + cot^2 a$$ $$=2(1+\cot^2 a)$$ $$= 2 + 2 \cot^2 a$$ $$= R. H. S$$ Hence proved $$\frac{1}{1 + \cos a} + \frac{1}{1 - \cos a} = 2 + 2\cot^2 a$$ #### 14. $\cos^4 b - \sin^4 b = 1 - 2\sin^2 b$ #### **Solution:** $$\cos^4 b - \sin^4 b = 1 - 2\sin^2 b$$ #### L. H. S $$\cos^4 b - \sin^4 b$$ $$= \cos^4 b - \sin^4 b$$ $$= (\cos^2 b)^2 - (\sin^2 b)^2$$ $$As (a)^2 - (b)^2 = (a + b)(a - b)$$ $$= (\cos^2 b + \sin^2 b)(\cos^2 b - \sin^2 b)$$ $$As \cos^2 b + \sin^2 b = 1$$ $$= (1)(\cos^2 b - \sin^2 b)$$ $$= \cos^2 b - \sin^2 b$$ $$As \cos^2 b = 1 - \sin^2 b$$ $$= 1 - \sin^2 b - \sin^2 b$$ $$= 1 - 2\sin^2 b$$ $$= R. H. S$$ #### **Unit # 7** Hence proved $$\cos^4 b - \sin^4 b = 1 - 2\sin^2 b$$ 15. $$\frac{\sin y + \cos y}{\sin y} - \frac{\cos y - \sin y}{\cos y} = \sec y \csc y$$ $$\frac{\overline{\sin y + \cos y}}{\sin y} - \frac{\cos y - \sin y}{\cos y} = \sec y \csc y$$ #### L. H. S $$\frac{\sin y + \cos y}{\sin y} - \frac{\cos y - \sin y}{\cos y}$$ $$=
\frac{\cos y (\sin y + \cos y) - \sin y (\cos y - \sin y)}{\sin y \cos y}$$ $$= \frac{\cos y \sin y + \cos^2 y - \sin y \cos y + \sin^2 y}{\sin y \cos y}$$ $$= \frac{\cos y \sin y - \sin y \cos y + \cos^2 y + \sin^2 y}{\sin y \cos y}$$ $$As \cos^2 y + \sin^2 y = 1$$ $$= \frac{1}{\sin y \cos y}$$ $$= \frac{1}{\sin y} \cdot \frac{1}{\cos y}$$ As $$\frac{1}{\sin y} = \csc y$$ And $\frac{1}{\cos y} = \sec y$ $= \cos \cos y \sec y$ = sec y cosec y = R.H.S Hence proved $$\frac{\sin y + \cos y}{\sin y} - \frac{\cos y - \sin y}{\cos y} = \sec y \csc y$$ 16. $$(\sec x - \tan x)^2 = \frac{1 - \sin x}{1 + \sin x}$$ #### **Solution:** $$(\sec x - \tan x)^2 = \frac{1 - \sin x}{1 + \sin x}$$ #### L. H. S $$(\sec x - \tan x)^2$$ $$= (\sec x - \tan x)^2$$ As $$\sec x = \frac{1}{\cos x}$$ And $\tan x = \frac{\sin x}{\cos x}$ $$= \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x}\right)^2$$ $$= \left(\frac{1 - \sin x}{\cos x}\right)^2$$ $$= \frac{(1 - \sin x)^2}{\cos^2 x}$$ $$As \cos^2 x = 1 - \sin^2 x$$ $$As \cos^2 x = 1 - \sin^2 x$$ $$= \frac{(1 - \sin x)^2}{1 - \sin^2 x}$$ $$= \frac{(1 - \sin x)^2}{1^2 - \sin^2 x}$$ $$= \frac{(1 - \sin x)(1 - \sin x)}{(1 + \sin x)(1 - \sin x)}$$ $$= \frac{(1 - \sin x)}{(1 + \sin x)}$$ = R. H. S Hence proved $$(\sec x - \tan x)^2 = \frac{1 - \sin x}{1 + \sin x}$$ #### 17. $\sin x \tan x + \cos x = \sec x$ #### **Solution:** $\sin x \tan x + \cos x = \sec x$ L. H. S $\sin x \tan x + \cos x$ As $$\tan x = \frac{\sin x}{\cos x}$$ $$= \sin x \frac{\sin x}{\cos x} + \cos x$$ $$= \frac{\sin^2 x}{\cos x} + \cos x$$ $$= \frac{\sin^2 x + \cos^2 x}{\cos x}$$ $$As \sin^2 x + \cos^2 x = 1$$ $$= \frac{1}{\cos x}$$ $$As \frac{1}{\cos x} = \sec x$$ $= \sec x$ = R. H. S Hence proved $\sin x \tan x + \cos x = \sec x$ #### Ex # 7.6 #### **Angle of Elevation and Depression** #### **Unit #7** #### Example # 20 An aerial photographer who photographs a farm house for a company has determined from experience that the best photo is taken at a height of approximately 475 ft and a distance of 850 ft from the farmhouse. What is the angle of depression from the plane to the house? Solution: From the figure Let the height of aerial photographer $= m\overline{AC} = 475 ft$ And distance from the farmhouse $= m\overline{AB} = 850 ft$ #### To Find: Angle of Depression = θ =? Thus $\angle ABC = \theta = ?$ (Alternate angle) $$\sin \theta = \frac{perp}{hyp}$$ $$\sin \theta = \frac{475}{hyp}$$ $$\sin \theta = \frac{1}{850}$$ $$\sin \theta = 0.550$$ $$\sin \theta = 0.5588$$ $\theta = \sin^{-1} 0.5588$ $$\theta = 33.97^{\circ}$$ $$\theta = 34^{\circ}$$ Example # 21: To measure cloud height at night, a vertical beam of light is directed on a spot on the cloud. From a point 135 ft away from the light source, the angle of elevation to the spot is found to be 67.35°. Find the height of the cloud. #### **Solution:** From the figure Let the distance between point & $light \ source = 135 \ ft$ And Angle of elevation = 67.35° #### To Find: Height of cloud = h = ? As we have $$\tan \theta = \frac{perp}{base}$$ $$\tan 6735^{\circ} = \frac{h}{135}$$ $$2.396 = \frac{h}{135}$$ $$2.396 \times 135 = h$$ $$323.46 = h$$ $$h = 323.46$$ Thus Height of cloud = 323.46 ft Example # 22: A light house is 300 m above the sea level. Angles of depression of two boats from the top of light house are 30° and 45° respectively. If line joining #### **Unit # 7** the boats passes through the foot of light house. Find the distance between the boats when they are on the same side of the light house. #### **Solution:** From the figure Let the height of light house $= m\overline{AB} = 300 \, m$ Let Boats are point C and D As angle of depressions are 30° and 45° As $\angle EBD = 30^{\circ}$ Then $\angle BDA = 30^{\circ}$ (Alternate angle) As $\angle EBC = 45^{\circ}$ Then $\angle BCA = 45^{\circ}$ (Alternate angle) #### To Find: Distance between two boats = $m\overline{CD}$ = ? Now From Right angled $\triangle ABD$ $$\tan \theta = \frac{perp}{base}$$ $$\tan 30^{\circ} = \frac{m\overline{AB}}{m\overline{AD}}$$ $$\frac{1}{\sqrt{2}} = \frac{300}{m\sqrt{4D}}$$ $$m\overline{AD} = 300\sqrt{3}$$ From Right angled DABC $$\tan \theta = \frac{perp}{base}$$ $$\tan 45^{\circ} = \frac{m\overline{AB}}{m\overline{AC}}$$ $$1 = \frac{300}{m\overline{AC}}$$ $$m\overline{AC} = 300$$ As we have $$m\overline{AC} + m\overline{CD} = m\overline{AD}$$ As $$m\overline{AD} = 300\sqrt{3}$$ and $m\overline{AC} = 300$ So $$300 + m\overline{CD} = 300\sqrt{3}$$ $$m\overline{CD} = 300\sqrt{3} - 300$$ $$m\overline{CD} = 300(\sqrt{3} - 1)$$ Thus Distance between two boats = $300(\sqrt{3} - 1) m$ #### Exercise # 7.6 #### Page # 189 Q1: A building that is 21 meters tall casts a shadow 25 meters long. Find the angle of elevation of the sun to nearest degree. #### **Solution:** From the figure Let the height of building $= m\overline{AB} = 21m$ And shadow of building = $m\overline{BC} = 25m$ #### To Find: Angle of Elevation = $\angle ACB = \theta = ?$ As we have $$\tan \theta = \frac{perp}{base}$$ $$\tan \theta = \frac{21}{21}$$ $$\tan\theta = \frac{21}{25}$$ $$\tan \theta = 0.84$$ $\theta = \tan^{-1} 0.84$ $$\theta = 40.03^{\circ}$$ Angle of Elevation $= 40.03^{\circ}$ Q2: A light house is 150 m above the sea level. Angle of depression of a boat from its top is 60°. find the distance between the boat and the lighthouse. #### **Solution:** From the figure Let the height of light house = $m\overline{AB} = 150 m$ And Angle of depression = 60° #### To Find: Distance b/w boat and light house = $m\overline{BC}$ = ? As we have $$\tan \theta = \frac{perp}{base}$$ an $$60^{\circ} = \frac{m\overline{AB}}{m\overline{BC}}$$ $$\sqrt{3} = \frac{150}{m\overline{BC}}$$ $$m\overline{BC} = \frac{150}{\sqrt{3}}$$ Multiply and divide by $\sqrt{3}$ $$m\overline{BC} = \frac{150}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$ $$m\overline{BC} = \frac{150\sqrt{3}}{\left(\sqrt{3}\right)^2}$$ $$m\overline{BC} = \frac{150\sqrt{3}}{3}$$ $$m\overline{BC} = 50\sqrt{3}$$ Thus Distance b/w boat and light house = $50\sqrt{3}$ m #### **Unit #7** Q3: A tree is 50 m high. Find the angle of elevation of its top to a point, on the ground 100 m away from the foot of a tree. #### **Solution:** From the figure Let the height of tree = $m\overline{AB} = 50 m$ And distance between a point and tree = $m\overline{BC} = 100 \, m$ To Find: Angle of Elevation = $\angle ACB = \theta = ?$ As we have $$\tan \theta = \frac{perp}{base}$$ $$\tan \theta = \frac{50}{100}$$ $$\tan \theta = 0.5$$ $$\theta = \tan^{-1} 0.5$$ $$\theta = 26.56^{\circ}$$ Thus Angle of Elevation = 26.56° Q4: From top of hill 240 m high, measure of angles of depression of top and bottom of minaret are 30° and 60° respectively. Find height of minaret. #### **Solution:** From the figure Let the height of hill = $m\overline{AB}$ = 240 m As $\angle DAE = 30^{\circ}$ Also $\angle DAC = 60^{\circ}$ Also $\angle ACB = 60^{\circ}$ (Alternate angle) #### To Find: Height of minaret = $m\overline{CE}$ = ? Now From Right angled $$\triangle ABC$$ $\tan \theta = \frac{perp}{base}$ $\tan 60^{\circ} = \frac{m\overline{AB}}{m\overline{BC}}$ $\sqrt{3} = \frac{240}{m\overline{BC}}$ $m\overline{BC} = \frac{240}{\sqrt{3}}$ From Right angled $\triangle ADE$ $\tan \theta = \frac{perp}{base}$ $\tan \theta = \frac{m\overline{DE}}{m\overline{AD}}$ $$\frac{1}{\sqrt{3}} = \frac{m\overline{DE}}{m\overline{AD}}$$ $$\frac{1}{\sqrt{3}} m\overline{AD} = m\overline{DE}$$ $$As \ m\overline{AD} = m\overline{BC} = \frac{240}{\sqrt{3}}$$ $$\frac{1}{\sqrt{3}} \times \frac{240}{\sqrt{3}} = m\overline{DE}$$ $$\frac{240}{(\sqrt{3})^2} = m\overline{DE}$$ $$\frac{240}{3} = m\overline{DE}$$ $$\frac{240}{3} = m\overline{DE}$$ $$80 = m\overline{DE}$$ $$m\overline{DE} = 80$$ As we have $$m\overline{DC} = m\overline{DE} + m\overline{EC}$$ As $$m\overline{DC} = m\overline{AB} = 240$$ and $m\overline{DE} = 80$ So Base $$240 = 80 + m\overline{EC}$$ $$240 - 80 = m\overline{EC}$$ $$160 = m\overline{EC}$$ $$m\overline{EC} = 160$$ Thus Height of minaret = 160 m Q5: A Police helicopter is flying at 800 feet. A stolen car is sighted at an angle of depression of 72°. Find the distance of stolen car, to the nearest foot, from a point directly below the helicopter. #### **Solution:** From the figure Let the height of helicopter = $m\overline{AB}$ = 800 ft And Angle of depression = 72° #### To Find: Distance from foot of helicopter to car = $m\overline{BC}$ = ? **Unit #7** #### Distance from foot of helicopter to car = 259.93 ft Q6: A light house is 300 m above the sea level. The angle of depression of two boats from the top light house are 30° and 45° respectively. If the line of joining of the boats passes through the foot of light house. Find the distance between two boats when they are on the opposite side of light house. #### **Solution:** From the figure Let the height of light house = $m\overline{AB} = 300 m$ As angle of depressions are 30° and 45° Thus $\angle ACB = 30^{\circ}$ (Alternate angle) Also $\angle ADB = 45^{\circ}$ (Alternate angle) #### To Find: Distance between two boats = $m\overline{CD}$ = ? Now From Right angled $\triangle ABC$ $$\tan \theta = \frac{perp}{base}$$ $$\tan 30^{\circ} = \frac{mAB}{mBC}$$ $$\frac{1}{\sqrt{3}} = \frac{300}{mBC}$$ $m\overline{BC} = 300\sqrt{3}$ From Right $\triangle ABD$ $$\tan\theta = \frac{perp}{base}$$ $$\tan 45^{\circ} = \frac{m\overline{AB}}{m\overline{BD}}$$ $$1 = \frac{300}{m\overline{BD}}$$ $$m\overline{BD} = 300$$ As we have $$m\overline{CD} = m\overline{CB} + m\overline{BD}$$ As $$m\overline{CB} = 300\sqrt{3}$$ and $m\overline{BD} = 300$ So $$m\overline{CD} = 300\sqrt{3} + 300$$ $$m\overline{CD} = 300(\sqrt{3} + 1)$$ Thus Distance between two boats = $300(\sqrt{3} + 1) m$ Q7: The angle of elevation of the top of a cliff is 30°. Walking 210 meter from the point towards the cliff, the angle of elevation becomes 45°. Find the height of the cliff. #### **Solution:** From the figure Angle of elevation at $C = 30^{\circ}$ Angle of elevation at $D =
45^{\circ}$ Distance between D & C = $m\overline{CD}$ = 210 m A And $m\overline{BC} = m\overline{BD} + m\overline{DC}$ #### To Find: Height of cliff = $m\overline{AB}$ =? Now From Right angled $\triangle ABD$ $$\tan\theta = \frac{perp}{base}$$ $$\tan 45^{\circ} = \frac{m\overline{AB}}{m\overline{BD}}$$ $$1 = \frac{m\overline{AB}}{m\overline{BD}}$$ $m\overline{BD} = m\overline{AB}$ Perp From Right $\triangle ABC$ $$\tan \theta = \frac{perp}{base}$$ $$\tan 30^{\circ} = \frac{mAB}{m\overline{BC}}$$ $$\therefore m\overline{BC} = m\overline{BD} + m\overline{DC}$$ hyp 210m $$\sqrt{3}$$ $mBD + mL$ 1 $m\overline{AB}$ $$\therefore m\overline{BD} = m\overline{AB}$$ $\sqrt{3}$ $m\overline{AB} + 210$ By Cross Multiplication mAB $$m\overline{AB} + 210 = m\overline{AB}\sqrt{3}$$ $$210 = m\overline{AB}\sqrt{3} - m\overline{AB}$$ $$m\overline{AB}\sqrt{3} - m\overline{AB} = 210$$ $$m\overline{AB}(\sqrt{3}-1)=210$$ $$m\overline{AB} = \frac{210}{\left(\sqrt{3} - 1\right)}$$ Thus Height of cliff = $$\frac{210}{(\sqrt{3}-1)} m$$ # **MATHEMATICS** Class 10th ## Unit # 13 PRACTICAL GEOMETRY CIRCLE | NAME: | |------------------| | F.NAME: | | CLASS: SECTION: | | ROLL #: SUBJECT: | | ADDRESS: | | | | SCHOOL: | #### **Unit # 13** #### **UNIT** # 13 #### PRACTICAL GEOMETRY CIRCLE #### **Circumscribe** Above the figure #### **Inscribe** Between or in the figure #### Circumcircle or Circumscribe a circle The circle passes through the vertices of polygon (triangle, square, hexagon). #### Incircle or inscribe a circle The circle which touches the sides of polygon (triangle, square, hexagon) #### **Escribed circle** The circle touching one side of the triangle externally and two produced sides internally is called escribed circle. #### Ex # 13.1 1. Construct a triangle with sides 2 cm, 2.5 cm and 3 cm. also draw its circumcircle. #### Given Let $m \overline{AB} = 2 cm$, $m \overline{BC} = 2.5 cm$, and $m \overline{AC} = 3 cm$ Required To circumscribe a circle about the given \triangle *ABC* #### **Steps of construction** - 1. Draw a line $m \overline{AB} = 2 cm$ - 2. With B as centre, draw an arc of radius 2.5 cm. - 3. With A as centre, draw another arc of radius 3 cm. - 4. Both the arcs meet at point C. - 5. Thus, ABC is the triangle according to data - 6. Draw the perpendicular bisectors of \overline{AB} and $m\overline{AC}$ which intersect each other at O. - 7. Join O to B. - 8. With centre O and radius $m \overline{OB}$ draw a circle. - 9. This is the required circumscribed circle about the given \triangle *ABC* - 2. Construct a triangle ABC such that $m\overline{AB} = 3$ " $m\overline{AC} = 4$ " and $m\angle A = 60^{\circ}$. draw circumcircle to this triangle. #### Given Let $m \overline{AB} = 3 cm$, $m \overline{AC} = 4 cm$, and $m \angle A = 60^{\circ}$ #### Required To circumscribe a circle about the given \triangle *ABC* #### **Steps of Construction** - 1. Draw a line $m\overline{AB} = 3 cm$ - 2. At point A, draw an angle of 60° - 3. With A as centre, draw an arc of radius 4 cm which cuts angle 60° at points C. - 4. Join B to C. - 5. Thus, ABC is the required triangle. - 6. Draw the perpendicular bisectors of \overline{AB} and $m\overline{AC}$ which intersect each other at O. - 7. Join O to B. - 8. With centre O and radius $m \overline{OB}$ draw a circle which touches the vertices of triangle. - 9. This is the required circumscribed circle about the given \triangle *ABC* #### **Unit # 13** # 3. Suppose we have a triangle whose sides are 3 cm, 4 cm and 6 cm respectively. Draw its inscribed circle. #### Given Let $m \overline{AB} = 3 cm$, $m \overline{BC} = 4 cm$, and $m \overline{AC} = 6 cm$ Required To inscribe a circle in the given \triangle *ABC* #### Steps of construction - 1. Draw a line $m \overline{AB} = 3 cm$ - 2. With B as centre, draw an arc of radius 4 cm. - 3. With A as centre, draw another arc of radius 6 cm. - 4. Both the arcs meet at point C. - 5. Thus, ABC is the triangle according to data - 6. Draw the bisectors of angles A and B which pass through same point O. - 7. From O, draw $\overline{OD} \perp \overline{AB}$ - 8. With centre O and radius $m \overline{OD}$ draw a circle which touches the sides of triangle. - 9. This is the required inscribed circle in the given \triangle ABC - 4. Construct a triangle ABC with sides $m\overline{AB} = 5cm$, $m\overline{BC} = 6cm$ and $m\overline{CA} = 8cm$. Draw perpendicular bisectors of its sides and then circumscribe a circle. Given $m \overline{AB} = 5 cm$, $m \overline{BC} = 6 cm$, and $m \overline{CA} = 8 cm$ Required To circumscribe a circle about the given \triangle *ABC* #### **Steps of construction** - 1. Draw a line $m \overline{AB} = 5 cm$ - 2. With B as centre, draw an arc of radius 6 cm. - 3. With A as centre, draw another arc of radius 8 cm. - 4. Both the arcs meet at point C. - 5. Thus, ABC is the triangle according to data - 6. Draw the perpendicular bisectors of \overline{AB} , \overline{BC} and $m\overline{AC}$ which intersect each other at O. - 7. Join O to B. - 8. With centre O and radius $m \overline{OB}$ draw a circle which touches the vertices of triangle. - 9. This is the required circumscribed circle about the given \triangle *ABC* - 5. Draw a triangle ABC with $m \angle A = 60^{\circ}$ and $m \angle B = 45^{\circ}$. draw three angle bisectors and then inscribe a circle in it. #### Given Let $m \overline{AB} = 5 cm$, $m \angle A = 60^{\circ}$ and $m \angle B = 45^{\circ}$ #### Required To inscribe a circle in the given \triangle *ABC* #### Steps of construction - 1. Draw a suitable line $m \overline{AB} = 5 cm$ - 2. At point A, draw an angle of 60° - 3. At point B, draw another angle of 45^o - 4. Both the angles meet at point C - 5. Thus, ABC is the required triangle. - 6. Draw the bisectors of angles A, B and C which pass through same point O. - 7. From O, draw $\overline{OD} \perp \overline{BC}$ - 8. With centre O and radius $m \overline{OD}$ draw a circle which touches the sides of triangle. - 9. This is the required inscribed circle in the given \triangle *ABC* - 6. An equilateral triangle in inscribed in a circle. Find the altitude of the triangle if the radius of the circle varies as under. r = 3 units, r = 4 units, r = 6 units, r = 12 units. Can you deduce some result from this? #### r = 3 units #### **Solution:** Let 1 unit = 1 cm Then 3 units = 3 cm #### Given A circle with centre O and radius 3 cm. #### Required Inscribe an equilateral triangle in the circle. #### **Steps of construction** - 1. At point O, draw a circle of radius 3 cm - 2. Draw diameter \overline{AB} of the circle. - 3. With centre A and radius 3 cm, draw two arcs which cut the circle at C and D. - 4. Join B, C and D. - 5. This is the required equilateral triangle. #### Note: The altitude of a triangle is 4.5 cm. #### r = 4 units #### **Solution:** Let 1 unit = 1 cm Then 4 units = 4 cm #### Given A circle with centre O and radius 4 cm. #### Required Inscribe an equilateral triangle in the circle. #### **Unit # 13** #### **Steps of construction** - 1. At point O, draw a circle of radius 4 cm - 2. Draw diameter \overline{AB} of the circle. - 3. With centre A and radius 4 *cm*, draw two arcs which cut the circle at C and D. - 4. Join B, C and D. - 5. This is the required equilateral triangle. #### Note The altitude of a triangle is 4.5 cm. #### r = 6 units #### **Solution:** Let 2 units = 1 cm Then 6 units = 3 cm #### Given A circle with centre O and radius 3 cm. #### Required Inscribe an equilateral triangle in the circle. #### Steps of construction - 1. At point O, draw a circle of radius 3 cm - 2. Draw diameter \overline{AB} of the circle. - 3. With centre A and radius 3 *cm*, draw two arcs which cut the circle at C and D. - 4. Join B, C and D. - 5. This is the required equilateral triangle. #### Note: The altitude of a triangle is 4.5 cm. #### r = 12 units #### **Solution:** Let 3 units = 1 cm Then 12 units = 4 cm #### Given A circle with centre O and radius 4 cm. #### Required Inscribe an equilateral triangle in the circle. # **Steps of construction** - 1. At point O, draw a circle of radius 4 cm - 2. Draw diameter \overline{AB} of the circle. - 3. With centre A and radius 4 *cm*, draw two arcs which cut the circle at C and D. - 4. Join B, C and D. - 5. This is the required equilateral triangle. # Note: # The altitude of a triangle is 4.5 cm. 7. An equilateral triangle is circumscribed about a circle. Find the altitude of the triangle if radius r of the circle varies as r = 2 units, r = 5 units, r = 10 units. Can you deduce some result from this? r = 2 units # **Solution:** Let 1 unit = 1 cm Then 2 units = 2 cm # Given A circle with centre O and radius 2 cm. ## Required Circumscribe an equilateral triangle about the circle. # **Steps of construction** 1. At point O, draw a circle of radius 2 cm # **Unit # 13** - 2. Take any point A on the circle and join to O. - 3. Draw an angle $\angle AOB$ of measure 120°. - 4. Draw another angle $\angle BOC$ of measure 120°. - 5. Draw perpendiculars at points A, B and C which cut each other at points D, E and F. - 6. Thus, DEF is the required equilateral triangle about the circle. # Note: The altitude of a triangle is 4.5 cm. # r = 5 units # **Solution:** Let 1 unit = 1 cm Then 5 units = 5 cm ## Given A circle with centre O and radius 5 cm. # Required Circumscribe an equilateral triangle about the circle. # Steps of construction - 1. At point O, draw a circle of radius 5 cm - 2. Take any point A on the circle and join to O. - 3. Draw an angle $\angle AOB$ of measure 120°. - 4. Draw another angle $\angle BOC$ of measure 120°. - 5. Draw perpendiculars at points A, B and C which cut each other at points D, E and F. - 6. Thus, DEF is the required equilateral triangle about the circle. # Note: The altitude of a triangle is 4.5 cm. # r = 10 units # **Solution:** Let 2 units = 1 cm Then 10 units = 5 cm ## Give A circle with centre O and radius 5 cm. # Required
Circumscribe an equilateral triangle about the circle. # Steps of construction - 1. At point O, draw a circle of radius 5 cm - 2. Take any point A on the circle and join to O. - 3. Draw an angle $\angle AOB$ of measure 120°. - 4. Draw another angle $\angle BOC$ of measure 120°. - 5. Draw perpendiculars at points A, B and C which cut each other at points D, E and F. - 6. Thus, DEF is the required equilateral triangle about the circle. # Note: The altitude of a triangle is 4.5 cm. # 8. Circumcircle an equilateral triangle about a circle of radius 2", 3" and 1". r = 2" # **Solution:** # Given A circle with centre O and radius 2 cm. # Required Circumscribe an equilateral triangle about the circle. # **Steps of construction** - 1. At point O, draw a circle of radius 2 cm - 2. Take any point A on the circle and join to O. - 3. Draw an angle $\angle AOB$ of measure 120°. # **Unit # 13** - 4. Draw another angle $\angle BOC$ of measure 120°. - 5. Draw perpendiculars at points A, B and C which cut each other at points D, E and F. - Thus, DEF is the required equilateral triangle about the circle. r = 3" # **Solution:** ## Given A circle with centre O and radius 3 cm. # Required Circumscribe an equilateral triangle about the circle. # **Steps of construction** - 1. At point O, draw a circle of radius 3 cm - 2. Take any point A on the circle and join to O. - 3. Draw an angle $\angle AOB$ of measure 120°. - 4. Draw another angle $\angle BOC$ of measure 120°. - 5. Draw perpendiculars at points A, B and C which cut each other at points D, E and F. - 6. Thus, DEF is the required equilateral triangle about the circle. $r = \overline{1}$ # **Solution:** # Given A circle with centre O and radius 1 cm. # Required Circumscribe an equilateral triangle about the circle. ₩. # **Steps of construction** - 1. At point O, draw a circle of radius 1 cm - 2. Take any point A on the circle and join to O. - 3. Draw an angle $\angle AOB$ of measure 120°. - 4. Draw another angle $\angle BOC$ of measure 120°. - 5. Draw perpendiculars at points A, B and C which cut each other at points D, E and F. - 6. Thus, DEF is the required equilateral triangle about the circle. - 9. Draw a triangle with sides 2.5 cm, 3.5 cm and 4.5 cm long. Draw an escribed circle to the triangle touching the longest side of the triangle. # Given Let $m \overline{AB} = 2.5 cm$, $m \overline{BC} = 4.5 cm$, and $m \overline{AC} = 3.5 cm$ # Required An escribed circle touching the longest side of \triangle ABC # **Steps of construction** - 1. Draw a line $m \overline{AB} = 2.5 cm$ - 2. With B as centre, draw an arc of radius 4.5 cm. - 3. With A as centre, draw another arc of radius 3.5 cm. - 4. Both the arcs meet at point C. - 5. Thus, ABC is the triangle according to data. - 6. Produce \overline{AB} and $m\overline{AC}$ to form exterior angles $\angle CBD$ and $\angle BCE$ - 7. Draw bisectors of $\angle BAC$, $\angle CBD$ and $\angle BCE$. - 8. All the angle bisectors intersect at point O. - 9. Draw $\overline{OF} \perp \overline{AD}$ - 10. With centre O and radius $m \overline{OF}$ draw a circle which touches \overline{BC} , \overline{BD} and $m\overline{CE}$ # **Unit # 13** 11. This is the required escribed circle touches the longest side of given \triangle *ABC* 10. For the problem in Q9, draw an escribed circle to the triangle touching the smallest side. # OR Draw a triangle with sides 2.5 cm, 3.5 cm and 4.5 cm long. Draw an escribed circle to the triangle touching the shortest side of the triangle. ## Given Let $m \overline{AB} = 3.5 cm$, $m \overline{BC} = 2.5 cm$, and $m \overline{AC} = 4.5 cm$ # Required An escribed circle touching the longest side of \triangle ABC # **Steps of construction** - 1. Draw a line $m \overline{AB} = 3.5 cm$ - 2. With B as centre, draw an arc of radius 2.5 cm. - 3. With A as centre, draw another arc of radius 4.5 cm. - 4. Both the arcs meet at point C. - 5. Thus, ABC is the triangle according to data. - 6. Produce \overline{AB} and $m\overline{AC}$ to form exterior angles $\angle CBD$ and $\angle BCE$ - 7. Draw bisectors of $\angle BAC$, $\angle CBD$ and $\angle BCE$. - 8. All the angle bisectors intersect at point O. - 9. Draw $\overline{OF} \perp \overline{AD}$ - 10. With centre O and radius $m \overline{OF}$ draw a circle which touches \overline{BC} , \overline{BD} and $m\overline{CE}$ - 11. This is the required escribed circle touches the smallest side of given Δ *ABC* Ex # 13.2 Page # 259 # 1. Circumscribe a square about a circle of radius 5 cm. Given A circle with centre O and radius 5 cm. # Required Circumscribed a square about a circle. # **Steps of construction** - 1. At point O, draw a circle of radius 5 cm - 2. Draw diameter \overline{AB} of the circle. - 3. Draw another diameter \overline{CD} which is perpendicular to \overline{AB} - 4. Draw perpendiculars at the extremities A, C, B and D which cut each other at points E, F, G and H. - 5. Thus, EFGH is the required square circumscribed about that circle # 2. Inscribe a square in a circle of radius 6 cm. # Given A circle with centre O and radius 6 cm. # Required Inscribe a square in the given circle. # **Unit # 13** # **Steps of construction** - 1. At point O, draw a circle of radius 6 cm - 2. Draw diameter \overline{AB} of the circle. - 3. Draw another diameter \overline{CD} which is perpendicular to \overline{AB} - 4. Join A to D, B and C. - 5. This ABCD is the required square. - 6. This is the required inscribe square in the circle. # Q3: Draw a square of side 6cm. Circumscribe a circle about that square and then inscribe a circle in the same square. Measure the radii of these circles. # **Solution** ## Given A square of side 6cm # Required Circumscribe and inscribe a circle of the given square and measure the radii of these circles. # **Steps of construction** - 1. Draw a line $m\overline{AB} = 6cm$. - 2. At points A and B, draw 90°. - 3. At points A and B, draw two arcs of radius 6cm which cut both 90° at points D and C. - 4. Join C and D. - 5. This ABCD is the required square. # For Circumscribe Circle - 1. Join A to C and B to D, which cut each other at point O - 2. With centre O and radius $m\overline{OA}$, draw a circle which intersect the square at A, B, C and D. - 3. This is the required circumscribe circle. # Radius As $\triangle ABC$ is the right-angled triangle. By Pythagoras Theorem $$(AC)^2 = (AB)^2 + (BC)^2$$ $$(AC)^2 = (6)^2 + (6)^2$$ $$(AC)^2 = 36 + 36$$ $$(AC)^2 = 72$$ $$\sqrt{(AC)^2} = \sqrt{72}$$ $$AC = 8.48$$ As \overline{AC} is the diameter of circle. So $\overline{AC} = d = 8.48$ $$r = \frac{d}{2}$$ $$r = \frac{8.48}{2}$$ $$r = 4.24cm$$ # For inscribe circle - 1. Draw $\overline{OE} \perp \overline{BC}$ - 2. With centre O and radius $m\overline{OE}$, draw a circle which touches the sides \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} - 3. This is the required inscribe circle. # **Radius** As \overline{OE} is half of 6cm. Then $$r = \frac{6}{2}$$ r = 3cm 4: First draw a circle of suitable radius, so that the square circumscribed about that circle has sides of length 8 units. # Solution # Given A circle and a square # Required A circle and a square about that circle ## Note Let 1 unit = 1cm then 8 units = 8 cm As diameter of circle is equal to the side of a square which is 8cm. Then radius of the circle is 4cm. # **Unit # 13** # **Steps of Construction** - 1. At point O, draw a circle of radius 4cm - 2. Draw diameter \overline{AB} of the circle. - 3. Draw another diameter \overline{CD} which is perpendicular to - 4. Draw perpendiculars the extremities A, C, B and D which cut each other at points E, F, G and H. - 5. Thus, EFGH is the required square circumscribed about that circle Q5: Inscribe a square of side 10 cm in a circle. What will be the size of radius? # Solution ## Given A square of side 10cm # Required Inscribe a circle of the given square and also find its radius. # **Steps of construction** - 1. Draw a line $m\overline{AB} = 10cm$. - 2. At points A and B, draw 90°. - 3. At points A and B, draw two arcs of radius 10 cm which cut both 90° at points D and C. - 4. Join C and D. - 5. Draw $\overline{OE} \perp \overline{BC}$ - 6. With centre O and radius $m\overline{OE}$, draw a circle which touches the sides \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} - 7. This is the required inscribe circle. # **Radius** By Pythagoras Theorem $$(AC)^2 = (AB)^2 + (BC)^2$$ $$(AC)^2 = (10)^2 + (10)^2$$ $$(AC)^2 = 100 + 100$$ $$(AC)^2 = 200$$ $$\sqrt{(AC)^2} = \sqrt{200}$$ $$AC = 14.1$$ **Unit # 13** As \overline{AC} is the diameter of circle. So $\overline{AC} = d = 14.14$ $$r = \frac{d}{2}$$ $$r = \frac{14.14}{2}$$ $$r = 7.07 cm$$ # 6: Inscribe a regular hexagon in a circle of radius 4 cm Given A circle with radius 4 cm. # Required To inscribe a regular hexagon in the given circle. # **Steps of Construction** - 1. With centre O, draw a circle of radius 4 cm. - 2. Take a point A on the circumference of the circle. - 3. At point A, draw two arcs of 4cm which cut the circumference of the circle at point B and C. - 4. Through O, draw \overline{AD} , \overline{BE} and \overline{CF} . - 5. Draw \overline{AB} , \overline{BF} , \overline{FD} , \overline{DE} , \overline{EC} , and \overline{CA} . - 6. Thus, ABFDEC is the required inscribe hexagon. # 7: Construct a circle of radius 4 cm and draw a regular hexagon about the circle. # Given A circle with radius 4 cm. # Required To draw a regular hexagon about the given circle. # **Steps of Construction** - 1. With centre O, draw a circle of radius 4 cm. - 2. Take a point A on the circumference of the circle. - 3. At point A, draw two arcs of 4cm which cut the circumference of the circle at point B and C. - 4. Through O, draw \overline{AD} , \overline{BE} and \overline{CF} . - 5. Draw perpendiculars at the extremities A, C, E, D, F and B which cut each other at points G, H, I, J, K and L. - 6.
Thus, GHIJKL is the required circumscribe hexagon. - 8: Draw a circle of radius 8 cm. Circumscribe a regular hexagon about that circle and also inscribe a regular in the same circle. Find the areas of these geometrical figures. Comment on the values of these areas. # **Solution:** Let 2 cm = 1 cm Then 8 units = 4 cm # Given A circle with radius 4 cm. # Required To draw circumscribe and inscribe a hexagon of the given circle and also find their areas. # **Steps of Construction** - 1. With centre O, draw a circle of radius 4 cm. - 2. Take a point A on the circumference of the circle. - 3. At point A, draw two arcs of 4cm which cut the circumference of the circle at point B and C. - 4. Through O, draw \overline{AD} , \overline{BE} and \overline{CF} . - 5. Draw perpendiculars at the extremities A, C, E, D, F and B which cut each other at points G, H, I, J, K and L. - 6. Thus, GHIJKL is the required circumscribe hexagon. - 7. Draw \overline{AC} , \overline{BF} , \overline{FD} , \overline{DE} , \overline{EC} , and \overline{CA} . - 8. Thus, ABFDEC is the required inscribe hexagon. # Area of circumscribe hexagon As we know that GHIJKL is circumscribe hexagon. As hexagon has six equal sectors with angle 60° each. Let take one sector OALB. Join O to L such that $\angle AOB = 30^{\circ}$ Now $\triangle AOB$ is the Right-angled triangle. As $$\overline{OL} = hyp, \overline{AL} = perp, \overline{OA} = base = 4cm$$ $\tan 30^0 = \frac{\overline{AL}}{\overline{OA}}$ $\frac{1}{\sqrt{3}} = \frac{\overline{AL}}{4}$ $$\frac{}{\sqrt{3}} = \frac{}{4}$$ $$\frac{4}{\sqrt{3}} = \overline{AL}$$ $$\overline{AL} = \frac{4}{\sqrt{3}}$$ Now for side of hexagon $$s = \overline{GL} = 2\overline{AL}$$ $$s = 2\left(\frac{4}{\sqrt{3}}\right)$$ $$s = \frac{8}{\sqrt{3}}$$ So, Area of circumscribe hexagon = $\frac{3\sqrt{3}}{2} \times s^2$ # **Unit # 13** $$= \frac{5.2}{2} \times \left(\frac{8}{\sqrt{3}}\right)^2$$ $$= \frac{5.2}{2} \times \frac{64}{3}$$ $$= 55.47 \text{ cm}^2$$ # Area of inscribe hexagon Since ABFDEC is inscribe hexagon and consists of six equilateral triangles with angle 60° each. As the angles and sides of an equilateral triangle are equal so each side equal to 4 cm. So, Area of inscribe hexagon $$= \frac{3\sqrt{3}}{2} \times s^2$$ $$= \frac{5.2}{2} \times (4)^2$$ $$= \frac{5.2}{2} \times 16$$ $$= 41.6 cm^2$$ 9: Draw two regular hexagons of perimeters 6 cm and 30 cm respectively. Determine their centres. From their centres draw perpendicular to any of their sides. What is the relation of these two perpendiculars? # Hexagon of perimeter 6cm # Given Perimeters of hexagon 6cm # Required Regular Hexagon As hexagon has six equal sides, then each side is 1cm. $$\frac{6}{6} = 1$$ # Steps of construction - 1. Draw a circle of radius 1 cm - 2. Take a point A on the circumference of a circle. - 3. With centre A, draw an arc of radius 1 cm which cuts the circumference of a circle at point B. - 4. Similarly draw successive arcs of 1cm which cut the circumference of the circle at C, D, E and F. - 5. Draw \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , and \overline{EF} . - 6. Thus, ABCDEF is the required hexagon of perimeter 6cm. # **Hexagon of perimeter 30cm** # Given Perimeters of hexagon 30cm # Required Regular Hexagon # Note As hexagon has six equal sides, then each side is 1cm. $$\frac{30}{6} = 5$$ # **Steps of construction** - 1. Draw a circle of radius 5 cm - 2. Take a point A on the circumference of a circle. - 3. With centre A, draw an arc of radius 1 cm which cuts the circumference of a circle at point B. - 4. Similarly draw successive arcs of 1cm which cut the circumference of the circle at C, D, E and F. - 5. Draw \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , and \overline{EF} . - 6. Thus, ABCDEF is the required hexagon of perimeter 30cm. # 10: Can you construct a square whose area equal to the areas of a given circle? Discuss in detail Solution: As we know that Area of circle = πr^2 Area of square = s^2 \therefore s = side As area of square = area of circle $$s^2 = \pi r^2$$ Taking square root on B.S $$\sqrt{s^2} = \sqrt{\pi r^2}$$ # **Unit # 13** $s = \sqrt{\pi}r$ s = 1.77rFrom the above equation, when radius is multiplied with $\sqrt{\pi}$ which is approximately equal to 1.77, in such case, the area of square is equal to area of given circle. # Tangent to the circle. A line that intersects a circle at exactly one point is called a tangent, and the point of intersection is called the point of tangency or point of contact. # Ex # 13.3 # Page # 267 1. Draw an arc of length 7 cm. Without using the center, draw a tangent through a given point A when A is: # (i) The middle point of the arc. As length of arc = 7cm As we know that $$l = r\theta$$ Here we take $$\theta = 90^{\circ} = \frac{\pi}{2}$$ So, $$l = r\theta$$ $$7 = r\left(\frac{\pi}{2}\right)$$ $$7\left(\frac{2}{\pi}\right) = r$$ $$\frac{14}{3.14159} = r$$ $$4.46 = r$$ $$r = 4.46$$ $$r = 4.5 cm$$ # **Steps of construction** - 1. Draw a line $\overline{OB} = 4.5 cm$ - 2. At point O, draw an angle of 90° - 3. With center O and radius 4.5 cm, draw an arc from Point B and cuts 90° at point C. - 4. The arc \widehat{BC} will be 7cm. - 5. Bisect \widehat{BC} at point A. - 6. At point A, draw the perpendicular \overline{DE} which is the required tangent at the middle point A of the arc. # (ii) End point of the arc. As length of arc = 7 cm As we know that $$l = r\theta$$ Here we take $$\theta=90^o=\frac{\pi}{2}$$ So, $$l = r\theta$$ $$7 = r\left(\frac{\pi}{2}\right)$$ $$7\left(\frac{2}{\pi}\right) = r$$ $$\frac{14}{2.14150} = 7$$ $$4.46 = r$$ $$r = 4.46$$ $$r = 4.5 cm$$ # **Steps of construction** - 1. Draw a line $\overline{OA} = 4.5 cm$ - 2. At point O, draw an angle of 90° - 3. With center O and radius 4.5 cm, draw an arc from Point A and cuts 90° at point B. - 4. The arc \widehat{AB} will be 7cm. - 5. Take any point C on the arc \widehat{AB} and join C to A and B - 6. Join A to B. - 7. Construct $\angle CAD \cong \angle ABC$. - 8. \overrightarrow{AD} is the required tangent at point A. # (iii) Outside the arc. As length of arc = 7 cm As we know that $$l = r\theta$$ # **Unit #13** Here we take $\theta = 90^{\circ} = \frac{\pi}{2}$ So, $$l = r\theta$$ $$7 = r\left(\frac{\pi}{2}\right)$$ $$7\left(\frac{2}{\pi}\right) = r$$ $$\frac{14}{214150} = 1$$ $$4.46 = r$$ $$r = 4.46$$ $$r = 4.5 cm$$ # Steps of construction - 1. Draw a line $\overline{OB} = 4.5 cm$ - 2. At point O, draw an angle of 90° - 3. With center O and radius 4.5 cm, draw an arc from Point B and cuts 90° at point C. - 4. The arc \widehat{BC} will be 7cm. - 5. Take a point A outside the arc. - 6. Join B and A which cuts the arc at point D. - 7. Bisect \overline{BA} at point E. - 8. With centre E and radius $m\overline{BE}$, draw the semi-circle. - 9. Draw $\overline{DF} \perp \overline{BA}$, which cuts the semi-circle at point G - 10. With centre A and radius $m\overline{AG}$, draw an arc which cuts the arc \widehat{BC} at point H. - 11. Join \overrightarrow{AH} which is the required tangent. - 2. Draw a circle passing through a point A and touching a given line \overrightarrow{BC} at point D. ## Given A line \overrightarrow{BC} and a point A # Required A circle passing through a point A and touching a given line \overrightarrow{BC} at point D # **Steps of construction** - 1. Draw a line \overrightarrow{BC} - 2. Take a point D on \overrightarrow{BC} - 3. Draw $\overline{AD} \perp \overrightarrow{BC}$ - 4. Take O the midpoint of \overline{AD} - 5. With centre O and radius \overline{mOA} , draw a circle which is passing through a point A and touching a given line \overrightarrow{BC} at point D - 3. Describe a circle of radius 4cm, passing through a given point C and touching a given straight line \overrightarrow{AB} . Given A line \overrightarrow{AB} and a point C # Required A circle passing through a point C and touching a given line \overrightarrow{AB} at point C # Steps of construction - 1. Draw a line \overrightarrow{AB} - 2. Take a point D on \overrightarrow{AB} - 3. Draw $\overline{DC} \perp \overrightarrow{AB}$ such that $\overline{CD} = 8cm$ - 4. Take O the midpoint of \overline{CD} # **Unit # 13** - 5. With centre O and radius $m\overline{OC} = 4cm$, draw a circle which is passing through a point C and touching a given line \overrightarrow{AB} at point D. - 4. Radius of a circle is 2.5 cm. A point Q is at a distance of 5cm from the centre. Draw tangent to the circle from the point Q. # Given A circle with radius 2.5cm and a point Q 5cm outside from the centre. # Required Tangent to a circle from point Q # **Steps of construction** - 1. With centre O and radius 2.5cm, draw a circle - 2. Take a point Q at 5cm from point O - 3. With centre Q and radius $m\overline{OQ} = 5cm$, draw an arc OA - 4. With center O and radius of 5cm which is diameter of circle (diameter = 2.5 + 2.5), draw another arc intersecting the arc OA at point B. - 5. Draw \overline{OB} which intersects the circle at point C. - 6. Through C, draw \overrightarrow{QC} which is the required tangent. - 5. Radii of two circles are 2cm and 3cm and their centres are 8cm apart. Draw direct common tangents to the circles. # Given Radii of two circles are 2cm and 3cm and their centres are 8cm apart. # Required Direct common tangents to the circles. # Steps of construction - 1. Draw a line $m\overline{AB} = 8 cm$. - 2. With centre A, draw a circle of radius 3cm. - 3. With centre B, draw another circle of radius 2cm. - 4. Bisect \overline{AB} at point C. - 5. With centre C and radius $m\overline{CA}$, draw a semi-circle. - 6. With centre A and radius 1cm (3cm 2cm = 1cm), draw an arc cutting the semi-circle at point D. - 7. Draw \overrightarrow{AD} to the meet the bigger circle at point E. - 8. Draw $\overline{BF} || \overline{AE}$. - 9. Join E and F and produce the line. - 10. Thus \overrightarrow{EF} is the
required direct common tangent of the given circles. # 6. Two congruent circles are of radius 4cm each. Their centres are 10cm apart. Draw transverse common tangents to these circles. # Given Two congruent circles are of radius 4cm each and their centres are 10cm apart. # Required Transverse common tangents to the circles. # **Steps of construction** - 1. Draw a line $m\overline{AB} = 10 \ cm$. - 2. With centre A, draw a circle of radius 4cm. - 3. With centre B, draw another circle of radius 4cm. # **Unit # 13** - 4. Bisect \overline{AB} at point C. - 5. Bisect \overline{AC} at point D. - 6. With centre D and radius $m\overline{DA}$, draw a semi-circle which cuts the given circle at point E. - 7. Join A to E. - 8. Draw $\overline{BF} || \overline{AE}$. - 9. Join E and F and produce the line. - 10. Thus \overrightarrow{EF} is the required transverse common tangent of the given circles. - 7. Radii of two circles are 2cm and 2.5cm respectively. Distance between their centres is 5.5cm. Draw transverse common tangents to the circles. # Given Radii of two circles are 2cm and 2.5cm and distance between their centres is 5.5cm # Required Transverse common tangents to the circles. # Steps of construction - 1. Draw a line $m\overline{AB} = 8 cm$ and produce to both directions. - 2. With centre A, draw a circle of radius 2.5cm. - 3. With centre B, draw another circle of radius 2cm. - 4. With centre A and radius 4.5 cm (2.5 cm + 2 cm = 4.5 cm), draw semi-circle. - 5. Bisect \overline{AB} at point C. - 6. With centre C and radius $m\overline{AC}$, draw an arc which cuts the semi-circle at point D. - 7. Draw \overline{AD} to the meet the bigger circle at point E. - 8. Draw $\overline{BF} || \overline{AE}$. - 9. Join E and F and produce the line. - 10. Thus \overrightarrow{EF} is the required transverse common tangent of the given circles. - 8. Draw $\angle ABC$ of measure 60° . Construct a circle having radius 2.5 cm and touching the arms of the angle. # Given **Unit # 13** $\angle ABC = 60^{\circ}$ and circle of radius 2.5 cm # Required The given circle touching the arms of angle # **Steps of construction** - 1. With centre O, draw a circle of radius 2.5cm. - 2. Draw the diameter \overline{AB} of the circle. - 3. At point O, draw an angle of 60° , which intersects the circle at point C. - 4. At point A and C, draw angles of 90° and intersect each other at point B. - 5. Hence $\angle ABC$ should be 60° - 6. Thus, the circle touches the arm of given angle. # **MATHEMATICS** Class 10th (KPK) | NAME: | |------------------| | F.NAME: | | CLASS: SECTION: | | ROLL #: SUBJECT: | | ADDRESS: | | | | SCHOOL: | Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Chapter # 1 # **UNIT # 1** # **QUADRATIC EQUATIONS** # Ex # 1.1 # **Quadratic equation** # **Introduction:** The name Quadratic comes from "quad" means square because the highest power of the variable is 2. # **Definition:** An equation in the form of $ax^2 + bx + c = 0$, where a, b and c are real numbers and $a \neq 0$ An equation of degree/ exponent/ power 2 is called **quadratic equation** $ax^2 + bx + c = 0$ is quadratic equation in one variable. # **Solutions or Roots of equation:** All those values of the variable for which the given equation is true are called **solutions or roots** of the equation. # **Solution Set:** The set of all solutions is called **solution set**. # **Example:** $$x^2-9=0$$ $$x^2 - 3^2 = 0$$ $$(x+3)(x-3)=0$$ $$x + 3 = 0$$ or $x - 3 = 0$ $$x = -3$$ or $x = 3$ $x^2 - 9 = 0$ is true only for x = 3 and x = -3, Hence x = 3 and x = -3 are the solutions or roots of $x^2 - 9 = 0$ and $\{3, -3\}$ is the solution set of $x^2 - 9 = 0$ # Note: - 1. $ax^2 + bx + c = 0$ is called General or Standard form of Quadratic equation. - 2. In Quadratic equation $a \neq 0$ # **Methods of Solving Quadratic equation:** - (a) By Factorization - (b) By Completing the Square - (c) By Quadratic Formula # Ex # 1.1 # **Solving Quadratic equation by Factorization:** In this method, a quadratic equation can easily be solved by splitting it in factors. # **Rules for Splitting:** Let $$ax^2 + bx + c = 0$$ - 1. Write the quadratic equation in standard form if necessary like above equation. - 2. First we find the product of a(coefficient of x^2) and c (constant term) i.e. ac - 3. Then find two numbers b_1 and b_2 such that b_1 and $b_2 = b$ and also $b_1b_2 = a$. c - 4. Now $ax^2 + b_1x + b_2x + c = 0$ can be factorized into two linear factors. - 5. Equate each factor to zero by zero product property. R.W $(x^2)(-6) = -6x^2$ Multiply +3x -2x $-6x^{2}$ Add +3x -2x +x 6. Solve the equation for given variable. # Example # 1 (i) $$2x^2 + 2x - 11 = 1$$ # Solution: $$2x^2 + 2x - 11 = 1$$ $$2x^2 + 2x - 11 - 1 = 0$$ $$2x^2 + 2x - 12 = 0$$ $$2(x^2 + x - 6) = 0$$ $$x^2 + x - 6 = 0$$ $$x^2 + 3x - 2x - 6 = 0$$ $$x(x+3) - 2(x+3) = 0$$ $$x + 1 = 0$$ or $x + 4 = 0$ $$x = -1$$ or $x = -4$ # Solution Set = $\{-1, -4\}$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Example # 1 (ii) # $12t^2 = t + 1$ # **Solution:** $$12t^2 + 3t - 4t - 1 = 0$$ $$3t(4t+1) - 1(4t+1) = 0$$ $$(4t+1)(3t-1) = 0$$ $$4t + 1 = 0$$ or $3t - 1 = 0$ $$4t = -1$$ or $3t = 1$ $$t = \frac{-1}{4} \quad or \quad t = \frac{1}{3}$$ # Example # 2 A ball is thrown straight up, from 3 m above the ground with a velocity of 14 m/s. When does it hit the ground? # **Solution:** Height starts at 3 m = 3 Velocity is 14 m/s = 14 t Gravity pulls by $5m/s^2 = -5t^2$ The height h at any time t is: $$h = 3 + 14t - 5t^2$$ The height is zero when the ball hit the ground. R.W $(5t^2)(-3) = -15t^2$ Add +1t -15t -14t Multiply +1t $-15t^{2}$ -15t $$0 = 3 + 14t - 5t^2$$ $$0 = -5t^2 + 14t + 3$$ $$0 = -(5t^2 - 14t - 3)$$ $$0 = 5t^2 - 14t - 3$$ $$5t^2 - 14t - 3 = 0$$ $$5t^2 - 14t - 3 = 0$$ $$5t^2 + 1t - 15t - 3 = 0$$ $$t(5t+1) - 3(5t+1) = 0$$ $$(5t+1)(t-3) = 0$$ $$5t + 1 = 0$$ or $t - 3 = 0$ $$5t = -1$$ or $t = 3$ $$t = \frac{-1}{5} \quad or \quad t = 3$$ The $t = \frac{-1}{5}$ is negative time which is impossible So the ball hits the ground after 3 seconds. # Chapter # 1 # Ex # 1.1 # . Solving Quadratic equation by Completing # square: R.W -4t $(12t^2)(-1) = -12t^2$ Multiply +3t $\frac{-4t}{-12t^2}$ - 1. Write the quadratic equation in its standard form - 2. Divide all terms by the co-efficient of x^2 if other than 1 - 3. Shift the constant term to the right side of the equation. - 4. Multiply the co efficient of x with $\frac{1}{2}$ then take Square of it and Add to B.S - 5. Write Left hand side of the equation as a perfect square and simplify the Right hand side - 6. Take square root on B.S of the equation and solve it. # Example # 3 $$\overline{x^2 - 8x + 9} = 0$$ # **Solution:** $$x^2 - 8x + 9 = 0$$ Subtract 9 from B. S $$x^2 - 8x + 9 - 9 = 0 - 9$$ $$x^2 - 8x = -9$$ $Add (4)^2$ on B. S $$x^2 - 8x + (4)^2 = -9 + (4)^2$$ $$(x)^2 - 2(x)(4) + (4)^2 = -9 + 16$$ $$(x-4)^2 = 7$$ $$\sqrt{(x-4)^2} = \pm \sqrt{7}$$ $$x - 4 = \pm \sqrt{7}$$ $$x = 4 \pm \sqrt{7}$$ # 3. Solving Quadratic equation by Quadratic Formula: - 1. Write the quadratic equation in its standard form: - 2. Compare the given equation with the standard quadratic equation $ax^2 + bx + c = 0$ to get the values of a, b and c. - 3. Put the values of a, b and c in the given formula. $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ 4. Now solve it for the values of variable. ## Note: By Quadrating formula we can solve all quadratic equations. Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.1 # **Derivation of Quadratic Formula:** As we have standard form of quadratic equation: $$ax^2 + bx + c = 0$$ Divide each term by "a" $$\frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a}$$ $$x^2 + \frac{bx}{a} + \frac{c}{a} = 0$$ Shift the constant term $\frac{c}{a}$ to right side $$x^{2} + \frac{bx}{a} = -\frac{c}{a}$$ Add $\left(\frac{b}{2a}\right)^{2}$ of B.S $$\frac{b}{a} \times \frac{1}{2} = \frac{b}{2a}$$ $$x^2 + \frac{bx}{a} + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$$ $$(x)^{2} + 2(x)\left(\frac{b}{2a}\right) + \left(\frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$ $$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4a}{4a^2}$$ $$\sqrt{\left(x + \frac{b}{2a}\right)^2} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$ $$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{\sqrt{4a^2}}$$ $$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$ $$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$ $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ # Example #4 Solve $3x^2 - 6x + 2 = 0$ by quadratic formula. # **Solution:** $$3x^2 - 6x + 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3, b = -6, c = 2$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values # Chapter # 1 $$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(3)(2)}}{2(3)}$$ $$x = \frac{6 \pm \sqrt{36 - 24}}{6}$$ $$x = \frac{6 \pm \sqrt{12}}{6}$$ $$x = \frac{6 \pm \sqrt{4 \times 3}}{6}$$ $$x = \frac{6 \pm 2\sqrt{3}}{6}$$ $$x = \frac{2(3 \pm \sqrt{3})}{6}$$ $$x = \frac{3 \pm \sqrt{3}}{3}$$ $$x = \frac{3}{3} \pm \frac{\sqrt{3}}{3}$$ $$x = 1 \pm \frac{\sqrt{3}}{3}$$ **Solution Set** = $$\left\{1 \pm \frac{\sqrt{3}}{3}\right\}$$ # Example # 5 A company is making frames of a new product they are launching. The frame will be cut out of a piece of steel. To keep the weight down, the final area should be $28 cm^2$. The inside of the frame has to be 11 cm by 6 cm. what should the width x of the meatal be? # **Solution:** According to condition: Length = $$11 + 2x$$ Width = $$6 + 2x$$ Area of steel before cutting $$Area = (11 + 2x)(6 +
2x)$$ $$Area = 66 + 22x + 12x + 4x^2$$ $$Area = 66 + 34x + 4x^2$$ $$Area = 4x^2 + 34x + 66$$ Area of steel after cutting out the 11×6 middle $$Area = 4x^2 + 34x + 66 - 11 \times 6$$ $$Area = 4x^2 + 34x$$ As Area is 28 cm² $$28 = 4x^2 + 34x$$ $$0 = 4x^2 + 34x - 28$$ $$4x^2 + 34x - 28 = 0$$ $$2(2x^2 + 17x - 14) = 0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.1 $$2x^2 + 17x - 14 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 2, b = 17, c = -14 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(17) \pm \sqrt{(17)^2 - 4(2)(-14)}}{2(2)}$$ $$x = \frac{-17 \pm \sqrt{289 + 112}}{4}$$ $$x = \frac{-17 \pm \sqrt{401}}{4}$$ $$x = \frac{-17 + \sqrt{401}}{4} \quad or \quad x = \frac{-17 - \sqrt{401}}{4}$$ x = 0.8 or x = -9.3 As length cannot be negative. So width = 0.8 # Ex # 1.1 # Page #8 R.W $(x^2)(4) = 4x^2$ R.W $(x^2)(5) = 5x^2$ -1x -5x -6x Add Multiply -1x $5x^2$ -5x Add +1x +4x +5x Multiply +1x +4x $4x^2$ # Q1: Solve each of the following equations by factorization. (i) $$x^2 + 5x + 4 = 0$$ # **Solution:** $$\frac{50343031}{x^2 + 5x + 4} = 0$$ $$x^2 + 1x + 4x + 4 = 0$$ $$x(x+1) + 4(x+1) = 0$$ $$(x+1)(x+4) = 0$$ $x+1=0$ or $x+4=0$ $$x + 1 = 0$$ or $x + 4 = 0$ $$x = -1$$ or $x = -4$ Solution Set = $\{-1, -4\}$ (ii) $$(x-3)^2 = 4$$ # **Solution:** $$\overline{(x-3)^2} = 4$$ $$(x)^2 - 2(x)(3) + (3)^2 = 4$$ $$x^2 - 6x + 9 = 4$$ $$x^2 - 6x + 9 - 4 = 0$$ $$x^2 - 6x + 5 = 0$$ $$x^2 - 1x - 5x + 5 = 0$$ $$x(x-1) - 5(x-1) = 0$$ $$(x-1)(x-5)=0$$ $$x - 1 = 0$$ or $x - 5 = 0$ # Chapter #1 # Ex # 1.1 $$x = 1$$ or $x = 5$ Solution Set = $\{1, 5\}$ (iii) $$x^2 + 3x - 10 = 0$$ # **Solution:** $$x^{2} + 3x - 10 = 0$$ $$x^{2} - 2x + 5x - 10 = 0$$ $$x^2 - 2x + 5x - 10 = 0$$ $x(x-2) + 5(x-2) = 0$ $$(x-2)(x+5) = 0$$ $$x - 2 = 0 \quad or \quad x + 5 = 0$$ $$x = 2$$ or $x = -5$ Solution Set = $\{2, -5\}$ (iv) $$6x^2 - 13x + 5 = 0$$ # **Solution:** $$6x^2 - 13x + 5 = 0$$ $$6x^2 - 3x - 10x + 5 = 0$$ $$3x(2x-1) - 5(2x-1) = 0$$ $$(2x - 1)(3x - 5) = 0$$ $$2x - 1 = 0$$ or $3x - 5 = 0$ $$2x = 1 \quad or \quad 3x = 5$$ $$x = \frac{1}{2} \quad or \quad x = \frac{5}{3}$$ Solution Set = $\left\{\frac{1}{2}, \frac{5}{3}\right\}$ | R.W | | | |---------------------|-----------|--| | $(6x^2)(5) = 30x^2$ | | | | Add | Multiply | | | -3x | -3x | | | -10x | -10x | | | -13x | $30x^{2}$ | | R.W Add +3x -7x -4x $(3x^2)(-7) = -21x^2$ Multiply +3x -7x $-21x^{2}$ R.W Add +5x +3x $(x^2)(-10) = -10x^2$ Multiply +5x -2x $-10x^{2}$ (v) $$3(x^2-1)=4(x-1)$$ # **Solution:** $$3(x^2 - 1) = 4(x - 1)$$ $$3x^2 - 3 = 4x - 4$$ $$3x^2 - 3 = 4x - 4$$ $3x^2 - 3 - 4x - 4 = 0$ $$3x^2 - 4x - 3 - 4 = 0$$ $$3x^2 - 4x - 3 - 4 = 0$$ $$3x^2 - 4x - 7 = 0$$ $$3x^2 + 3x - 7x - 7 = 0$$ $$3x^2 + 3x - 7x - 7 = 0$$ $$3x(x+1) - 7(x+1) = 0$$ $$(x+1)(3x-7)=0$$ $$x + 1 = 0$$ or $3x - 7 = 0$ $$x = -1$$ or $3x = 7$ $$x = -1$$ or $x = \frac{7}{3}$ Solution Set = $$\left\{-1, \frac{7}{3}\right\}$$ $10 \times \frac{1}{2} = 5$ $3 \times \frac{1}{2} = \frac{3}{2}$ For More Visit: https://tehkals.com/ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.1 R.W Add +7x -3x +4x $(x^2)(-21) = -21x^2$ Multiply +7x -3x $6 \times \frac{1}{2} = 3$ $-21x^{2}$ # (vi) x(3x-5) = (x-6x)(x-7) # **Solution:** $$x(3x - 5) = (x - 6x)(x - 7)$$ $$3x^2 - 5x = x^2 - 7x - 6x + 42$$ $$3x^2 - 5x = x^2 - 13x + 42$$ $$3x^2 - 5x - x^2 + 13x - 42 = 0$$ $$3x^2 - x^2 - 5x + 13x - 42 = 0$$ $$2x^2 + 8x - 42 = 0$$ $$2(x^2 + 4x - 21) = 0$$ Divide B. S by 2, we get $$x^2 + 4x - 21 = 0$$ $$x^2 + 7x - 3x - 21 = 0$$ $$x(x+7) - 3(x+7) = 0$$ $$(x+7)(x-3)=0$$ $$x + 7 = 0$$ or $x - 3 = 0$ $$x = -7$$ or $x = 3$ # Solution Set = $\{-7, 3\}$ # O2: Solve each of the following equations by completing the square. (i) $$x^2 + 6x - 40 = 0$$ # **Solution:** $$x^2 + 6x - 40 = 0$$ Add 40 on B. S $$x^2 + 6x - 40 + 40 = 0 + 40$$ $$x^2 + 6x = 40$$ Add $(3)^2$ on B. S $$x^2 + 6x + (3)^2 = 40 + (3)^2$$ $$(x)^2 + 2(x)(3) + (3)^2 = 40 + 9$$ $$(x+3)^2 = 49$$ Taking square root on B. S $$\sqrt{(x+3)^2} = \pm \sqrt{49}$$ $$x + 3 = \pm 7$$ $$x + 3 = 7$$ or $x + 3 = -7$ $$x = 7 - 3$$ or $x = -7 - 3$ $$x = 4$$ or $x = -10$ Solution Set = $\{4, -10\}$ (ii) $$x^2 - 10x + 11 = 0$$ # **Solution:** $$x^2 - 10x + 11 = 0$$ Subtract 11 from B.S $$x^2 - 10x + 11 - 11 = 0 - 11$$ $$x^2 - 10x = -11$$ # Chapter # 1 # Ex # 1.1 Add $(5)^2$ on B. S $$x^2 - 10x + (5)^2 = -11 + (5)^2$$ $$(x)^2 - 2(x)(5) + (5)^2 = -11 + 25$$ $$(x-5)^2 = 14$$ Taking on square root on B. S $$\sqrt{(x-5)^2} = \pm \sqrt{14}$$ $$x - 5 = \pm \sqrt{14}$$ $$x - 5 = \sqrt{14}$$ or $x - 5 = -\sqrt{14}$ $$x = 5 + \sqrt{14}$$ or $x = 5 - \sqrt{14}$ Solution Set $$= \{5 + \sqrt{14}, 5 - \sqrt{14}\}$$ $$4x^2 + 12x = 0$$ # **Solution:** (iii) $$4x^2 + 12x = 0$$ Divide all terms by 4 $$\frac{4x^2}{4} + \frac{12x}{4} = \frac{0}{4}$$ $$x^2 + 3x = 0$$ $$x^2 + 3x = 0$$ Add $$\left(\frac{3}{2}\right)^2$$ on B. S $$x^2 + 3x + \left(\frac{3}{2}\right)^2 = 0 + \left(\frac{3}{2}\right)^2$$ $$(x)^2 + 2(x)\left(\frac{3}{2}\right) + \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$ $$\left(x + \frac{3}{2}\right)^2 = \frac{9}{4}$$ Taking square root on B. S $$\sqrt{\left(x+\frac{3}{2}\right)^2} = \pm \sqrt{\frac{9}{4}}$$ $$x + \frac{3}{2} = \pm \frac{3}{2}$$ $$x + \frac{3}{2} = \frac{3}{2} \quad or \quad x + \frac{3}{2} = -\frac{3}{2}$$ $$x = \frac{3}{2} - \frac{3}{2} \quad or \quad x = -\frac{3}{2} - \frac{3}{2}$$ $$x = \frac{3}{2} - \frac{3}{2}$$ or $x = -\frac{3}{2} - \frac{3}{2}$ $$x = 0$$ or $x = \frac{-3 - 3}{2}$ $$x = 0$$ or $x = \frac{-6}{2}$ $$x = 0$$ or $x = -3$ Solution Set = $\{0, -3\}$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.1 (iv) $$5x^2 - 10x - 840 = 0$$ # **Solution:** $$5x^2 - 10x - 840 = 0$$ Divide all terms by 5 $$\frac{5x^2}{5} - \frac{10x}{5} - \frac{840}{5} = \frac{0}{5}$$ $$2 \times \frac{1}{2} = 1$$ $$x^2 - 2x - 168 = 0$$ Add 168 on B. S $$x^2 - 2x - 168 + 168 = 0 + 168$$ $$x^2 - 2x = 168$$ Add $(1)^2$ on B. S $$x^2 - 2x + (1)^2 = 168 + (1)^2$$ $$(x)^2 - 2(x)(1) + (1)^2 = 168 + 1$$ $$(x-1)^2 = 169$$ Taking square root on B. S $$\sqrt{(x-1)^2} = \pm \sqrt{169}$$ $$x - 1 = \pm 13$$ $$x - 1 = 13$$ or $x - 1 = -13$ $$x = 13 + 1$$ or $x = -13 + 1$ $$x = 14$$ or $x = -12$ Solution Set = $\{14, -12\}$ (v) $$9x^2 - 6x + \frac{5}{9} = 0$$ # **Solution:** $$9x^2 - 6x + \frac{5}{9} = 0$$ Divide all terms by 9 $$\frac{9x^2}{9} - \frac{6x}{9} + \frac{\frac{5}{9}}{9} = \frac{0}{9}$$ $$x^2 - \frac{2x}{3} + \frac{5}{9} \div 9 = 0$$ $$x^2 - \frac{2x}{3} + \frac{5}{9} \times \frac{1}{9} = 0$$ $$x^2 - \frac{2x}{3} + \frac{5}{81} = 0$$ Subtract $\frac{5}{81}$ from B. S $$x^2 - \frac{2x}{3} + \frac{5}{81} - \frac{5}{81} = 0 - \frac{5}{81}$$ # Chapter # 1 $$x^{2} - \frac{2x}{3} = -\frac{5}{81}$$ $$\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$$ $$\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$$ Add $$\left(\frac{1}{3}\right)^2$$ on B. S $$x^{2} - \frac{2x}{3} + \left(\frac{1}{3}\right)^{2} = -\frac{5}{81} + \left(\frac{1}{3}\right)^{2}$$ $$(x)^{2} - 2(x)\left(\frac{1}{3}\right) + \left(\frac{1}{3}\right)^{2} = -\frac{5}{81} + \frac{1}{9}$$ $$\left(x - \frac{1}{3}\right)^2 = \frac{-5 + 9}{81}$$ $$\left(x - \frac{1}{3}\right)^2 = \frac{4}{81}$$ Taking square root on B. S $$\sqrt{\left(x - \frac{1}{3}\right)^2} = \pm \sqrt{\frac{4}{81}}$$ $$x - \frac{1}{3} = \pm \frac{2}{9}$$ $$x - \frac{1}{3} = \frac{2}{9}$$ or $x - \frac{1}{3} = -\frac{2}{9}$ $$x = \frac{2}{9} + \frac{1}{3} \quad or \quad x = -\frac{2}{9} + \frac{1}{3}$$ $$x = \frac{2+3}{9} \quad or \quad x = \frac{-2+3}{9}$$ $$x = \frac{5}{9} \quad or \quad x = \frac{1}{9}$$ Solution Set = $$\left\{ \frac{5}{9}, \frac{1}{9} \right\}$$ (vi) $$(x-1)(x+3) = 5(x+2) - 3$$ # **Solution:** $$(x-1)(x+3) = 5(x+2) - 3$$ $$x^2 + 3x - 1x - 3 = 5x + 10 - 3$$ $$x^2 + 2x - 3 = 5x + 7$$ $$x^2 + 2x - 3 = 5x + 7$$ $$x^2 + 2x - 3 - 5x - 7 = 0$$ $$x^2 + 2x - 5x - 3 - 7 = 0$$ $$x^2 - 3x - 10 = 0$$ Add 10 on B.S $$x^2 - 3x - 10 + 10 = 0 + 10$$ $$x^2 - 3x = 10$$ $$x^{2} - 3x = 10$$ Add $\left(\frac{3}{2}\right)^{2}$ on B. S $$3 \times \frac{1}{2} = \frac{3}{2}$$ $$3 \times \frac{1}{2} = \frac{3}{2}$$ $$x^2 - 3x + \left(\frac{3}{2}\right)^2 = 10 + \left(\frac{3}{2}\right)^2$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.1 $$(x)^{2} - 2(x)\left(\frac{3}{2}\right) + \left(\frac{3}{2}\right)^{2} = 10 + \frac{9}{4}$$ $$\left(x - \frac{3}{2}\right)^{2} = \frac{40 + 9}{4}$$ $$\left(x - \frac{3}{2}\right)^{2} = \frac{49}{4}$$ Taking square root on B. S $$\sqrt{\left(x - \frac{3}{2}\right)^2} = \pm \sqrt{\frac{49}{4}}$$ $$x - \frac{3}{2} = \pm \frac{7}{2}$$ $$x - \frac{3}{2} = \frac{7}{2} \quad or \quad x + \frac{3}{2} = -\frac{7}{2}$$ $$x = \frac{7}{2} + \frac{3}{2} \quad or \quad x = -\frac{7}{2} + \frac{3}{2}$$ $$x = \frac{7+3}{2} \quad or \quad x = \frac{-7+3}{2}$$ $$x = \frac{7+3}{2} \quad or \quad x = \frac{-7+3}{2}$$ $$x = \frac{10}{2} \quad or \quad x = \frac{-4}{2}$$ $$x = 5 \quad or \quad x = -2$$ Solution Set = $\{5, -2\}$ # Q3: Solve each of the following equations by quadratic formula. (i) $$x^2 - 8x + 15 = 0$$ # **Solution:** $$x^2 - 8x + 15 = 0$$ Compare it with $ax^2 + bx + c = 0$ *Here* $$a = 1, b = -8, c = 15$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(15)}}{2(1)}$$ $$x = \frac{8 \pm \sqrt{64 - 60}}{2}$$ $$x = \frac{8 \pm \sqrt{4}}{2}$$ $$x = \frac{8 \pm 2}{2}$$ $$x = \frac{8+2}{2}$$ or $x = \frac{8-2}{2}$ # Chapter # 1 $$x = \frac{10}{2} \quad or \quad x = \frac{6}{2}$$ $$x = 5 \quad or \quad x = 3$$ Solution Set = {5,3} (ii) $$x^2 - 2x - 4 = 0$$ # **Solution:** $$x^2 - 2x - 4 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = -2, c = -4 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-2)
\pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)}$$ $$x = \frac{2 \pm \sqrt{4 + 16}}{2}$$ $$x = \frac{2 \pm \sqrt{20}}{2}$$ $$x = \frac{2 \pm \sqrt{4 \times 5}}{2}$$ $$x = \frac{2 \pm 2\sqrt{5}}{2}$$ $$x = \frac{2(1 \pm \sqrt{5})}{2}$$ $$x = 1 \pm \sqrt{5}$$ $$x = 1 + \sqrt{5}$$ or $x = 1 - \sqrt{5}$ Solution Set $= \left\{ 1 + \sqrt{5} \right\}$ $$(iii) \mid 4x^2 + 3x = 0$$ # **Solution:** $$4x^2 + 3x = 0$$ $$0r 4x^2 + 3x + 0 = 0$$ Compare it with $ax^2 + bx + c = 0$ $Here\ a=4,b=3,c=0$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(4)(0)}}{2(4)}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- $$x = \frac{-3 \pm \sqrt{9 - 0}}{8}$$ $$x = \frac{-3 \pm \sqrt{9}}{8}$$ $$x = \frac{-3 \pm 3}{8}$$ $$x = \frac{-3 + 3}{8} \quad or \quad x = \frac{-3 - 3}{8}$$ $$x = \frac{0}{8} \quad or \quad x = \frac{-6}{8}$$ $$x = 0 \quad or \quad x = \frac{-3}{4}$$ Solution Set = $$\left\{0, \frac{-3}{4}\right\}$$ (iv) $$3x(x-2)+1=0$$ # **Solution:** $$3x(x-2)+1=0$$ $$3x^2 - 6x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3, b = -6, c = 1$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(3)(1)}}{2(3)}$$ $$x = \frac{6 \pm \sqrt{36 - 12}}{6}$$ $$x = \frac{6 \pm \sqrt{24}}{6}$$ $$x = \frac{6 \pm \sqrt{4 \times 6}}{6}$$ $$x = \frac{6 \pm 2\sqrt{6}}{6}$$ $$x = \frac{2(3 \pm \sqrt{6})}{6}$$ $$x = \frac{3 \pm \sqrt{6}}{3}$$ $$x = \frac{3 + \sqrt{6}}{3}$$ or $x = \frac{3 - \sqrt{6}}{3}$ $$x = \frac{3}{3} + \frac{\sqrt{6}}{3}$$ or $x = \frac{3}{3} - \frac{\sqrt{6}}{3}$ $$x = 1 + \frac{\sqrt{6}}{3}$$ or $x = 1 - \frac{\sqrt{6}}{3}$ Solution Set $$=$$ $\left\{1 + \frac{\sqrt{6}}{3}, 1 - \frac{\sqrt{6}}{3}\right\}$ # Ex # 1.1 # (v) $6x^2 - 17x + 12 = 0$ **Solution:** $$6x^2 - 17x + 12 = 0$$ Compare it with $ax^2 + bx + c = 0$ Chapter # 1 Here $$a = 6, b = -17, c = 12$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-17) \pm \sqrt{(-17)^2 - 4(6)(12)}}{2(6)}$$ $$x = \frac{17 \pm \sqrt{289 - 288}}{12}$$ $$x = \frac{17 \pm \sqrt{1}}{12}$$ $$x = \frac{1}{12}$$ $$x = \frac{17+1}{12} \quad or \quad x = \frac{17-1}{12}$$ $$x = \frac{18}{12} \quad or \quad x = \frac{16}{12}$$ $$x = \frac{3}{2} \quad or \quad x = \frac{4}{3}$$ $$x = \frac{3}{2} \quad or \quad x = \frac{4}{3}$$ Solution Set = $$\left\{\frac{3}{2}, \frac{4}{3}\right\}$$ # $\frac{x^2}{3} - \frac{x}{12} = \frac{1}{24}$ $$\frac{x^2}{3} - \frac{x}{12} = \frac{1}{24}$$ Multiply all terms by 24 $$24 \times \frac{x^2}{3} - 24 \times \frac{x}{12} = 24 \times \frac{1}{24}$$ $$8x^2 - 2x = 1$$ $$8x^2 - 2x - 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 8, b = -2, c = -1$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(8)(-1)}}{2(8)}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- $$x = \frac{2 \pm \sqrt{4 + 32}}{16}$$ $$x = \frac{2 \pm \sqrt{36}}{16}$$ $$x = \frac{2 \pm 6}{16}$$ $$x = \frac{2 + 6}{16} \quad or \quad x = \frac{2 - 6}{16}$$ $$x = \frac{8}{16} \quad or \quad x = \frac{-4}{16}$$ $$x = \frac{1}{2} \quad or \quad x = \frac{-1}{4}$$ Solution Set = $\left\{\frac{1}{2}, \frac{-1}{4}\right\}$ O4: Find all the solutions to the following equations. (i) $$t^2 - 8t + 7 = 0$$ # **Solution:** | t - 1 = | = 0 | or t- | -7 = 0 | |---------|-----|-------|--------| | t = 1 | or | t = 7 | | **Solution Set** = $\{1, 7\}$ | (ii) | 72+6x=3 | x^2 | |------|---------|-------| | | ~ | | | α | | |----------|---------| | | ution: | | OU | uuwn. | | - | 0-0-0-0 | $$\overline{72 + 6x} = x^2$$ $$0 = x^2 - 6x - 72$$ $$x^2 - 6x - 72 = 0$$ $$x^2 + 6x - 12x - 72 = 0$$ $$x(x+6) - 12(x+6) = 0$$ $$(x+6)(x-12)=0$$ $$x + 6 = 0$$ or $x - 12 = 0$ $$x = -6$$ or $x = 12$ Solution Set = $\{-6, 12\}$ (iii) $$r^2 + 4r + 1 = 0$$ # Solution: $$r^2 + 4r + 1 = 0$$ Compare it with $ar^2 + br + c = 0$ Here $$a = 1, b = 4, c = 1$$ # Chapter # 1 # Ex # 1.1 As we have $$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$r = \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(1)}}{2(1)}$$ $$r = \frac{-4 \pm \sqrt{16 - 4}}{2}$$ $$r = \frac{-4 \pm \sqrt{16 - 4}}{2}$$ $$r = \frac{-4 \pm \sqrt{12}}{2}$$ $$r = \frac{-4 \pm \sqrt{4 \times 3}}{2}$$ $$r = \frac{-4 \pm 2\sqrt{3}}{2}$$ $$r = \frac{2\left(-2 \pm \sqrt{3}\right)}{2}$$ $$r = -2 \pm \sqrt{3}$$ $$r = -2 + \sqrt{3}$$ or $r = -2 - \sqrt{3}$ **Solution Set** = $\{-2 + \sqrt{3}, -2 - \sqrt{3}\}$ # x(x+10) = 10(-10-x)(iv) # Solution: R.W $(t^2)(7) = 7t^2$ R.W $(x^2)(-72) = -72x^2$ Multiply +6x $-72x^{2}$ -12x Multiply -1t $-21x^{2}$ -7t Add -1t -7t -8t Add +6x -12x -6x $$x(x+10) = 10(-10-x)$$ $$x^2 + 10x = -100 - 10x$$ $$x^2 + 10x + 10x + 100 = 0$$ $$x(x+10) + 10(x+10) = 0$$ $$(x+10)(x+10) = 0$$ $$x+10=0 \quad or \quad x+10=0$$ $$x = -10$$ or $x = -10$ **Solution Set** = $$\{-10\}$$ The equation (y + 13)(y + a) has no linear Q5: term. Find value of a. # **Solution:** $$(y + 13)(y + a)$$ $$= y^2 + ay + 13y + 13a$$ $$= y^2 + (a + 13)y + 13a$$ A linear term is term with a degree/power of 1. Here y is a linear term. As there is no linear term then the co - efficient of y must be zero. So $$a + 13 = 0$$ $$a = -13$$ Thus for $$a = -13$$. the above equation has no linear term. Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.1 Q6: The equation $ax^2 + 5x = 3$ has x = 1 as a solution. What is the other solution? # **Solution:** $$ax^2 + 5x = 3 \dots equ(i)$$ As x = 1 is the solution So put x = 1 in equ (i) $$a(1)^2 + 5(1) = 3$$ $$a + 5 = 3$$ $$a = 3 - 5$$ $$a = -2$$ put a = -2 in equ (i) to become equation R.W $(2x^2)(3) = 6x^2$ Add -2x -3x -5x Multiply -2x -3x $6x^2$ $$-2x^2 + 5x = 3$$ $$-2x^2 + 5x - 3 = 0$$ $$-(2x^2 - 5x + 3) = 0$$ $$2x^2 - 5x + 3 = 0$$ $$2x^2 - 2x - 3x + 3 = 0$$ $$2x(x-1) - 3(x-1) = 0$$ $$(x-1)(2x-3)=0$$ $$x - 1 = 0$$ or $2x - 3 = 0$ $$x = 1$$ or $2x = 3$ $$x = 1$$ or $x = \frac{3}{2}$ # Thus the other solution is $x = \frac{3}{2}$ 07: What is the positive difference of the roots of $x^2 - 7x - 9 = 0$? # **Solution:** $$x^2 - 7x - 9 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -7, c = -9$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(-9)}}{2(1)}$$ $$x = \frac{7 \pm \sqrt{49 + 36}}{2}$$ $$x = \frac{7 \pm \sqrt{85}}{2}$$ $$x = \frac{7 + \sqrt{85}}{2}$$ or $x = \frac{7 - \sqrt{85}}{2}$ Now the positive difference of roots is given by $$\frac{7+\sqrt{85}}{2} - \frac{7-\sqrt{85}}{2} = \frac{7+\sqrt{85}-(7-\sqrt{85})}{2}$$ # Chapter # 1 $$\frac{7 + \sqrt{85}}{2} - \frac{7 - \sqrt{85}}{2} = \frac{7 + \sqrt{85} - 7 + \sqrt{85}}{2}$$ $$\frac{7 + \sqrt{85}}{2} - \frac{7 - \sqrt{85}}{2} = \frac{2\sqrt{85}}{2}$$ $$\frac{7 + \sqrt{85}}{2} - \frac{7 - \sqrt{85}}{2} = \sqrt{85}$$ # Ex # 1.2 # Solution of Equations reducible to Quadratic form **Type 1**: $$ax^4 + bx^2 + c = 0$$ - Make $(x^2)^2$ 1. - Put $x^2 = y$ 2. - We get quadratic equation. 3. - Solve Quadratic equation on any method. # Note Polynomials of degree four is called biquadratic R.W Add -3y -8y -11y $(12y^2)(2) = 24y^2$ Multiply -3y $24v^2$ # Example # 6 $$12x^4 - 11x^2 + 2 = 0$$ # **Solution:** $$12x^4 - 11x^2 + 2 = 0$$ $$12(x^2)^2 - 11x^2 + 2 = 0$$ Let $$x^2 = y$$ $$12(y)^2 - 11y + 2 = 0$$ $$12y^2 - 11y + 2 = 0$$ $$12y^2 - 3y - 8y + 2 = 0$$ $$3y(4y-1) - 2(4y-1) = 0$$ $$(4y - 1)(3y - 2) = 0$$ $$4y - 1 = 0$$ or $3y - 2 = 0$ $$4y = 1 \quad or \quad 3y = 2$$ $$y = \frac{1}{4} \quad or \quad y = \frac{2}{3}$$ But $$y = x^2$$ $$x^2 = \frac{1}{4}$$ or $x^2 = \frac{2}{3}$ $$\sqrt{x^2} = \pm \sqrt{\frac{1}{4}} \quad or \quad \sqrt{x^2} = \pm \sqrt{\frac{2}{3}}$$ $$x = \pm \frac{1}{2} \quad or \quad x = \pm \sqrt{\frac{2}{3}}$$ Solution Set = $$\left\{\pm\frac{1}{2}, \pm\sqrt{\frac{2}{3}}\right\}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1. Type 2: $$p(x) + \frac{1}{p(x)} = 0$$ Example #7 $$2x+\frac{4}{x}=9$$ # **Solution:** $$2x + \frac{4}{x} = 9$$ Multiply all terms by x $$2x.x + \frac{4}{x}.x = 9.x$$ $$2x^2 + 4 = 9x$$ $$2x^2 + 4 - 9x = 0$$ $$2x^2 - 9x + 4 = 0$$ This is quadratic equation and solve it by factorization method. $$2x^2 - 1x - 8x + 4 = 0$$ $$x(2x-1)-4(2x-1)=0$$ $$(2x-1)(x-4)=0$$ $$2x - 1 = 0$$ or $x - 4$ $$2x = 1 \quad or \quad x = 4$$ $$x = \frac{1}{2} \quad or \quad x = 4$$ # R.W $(2x^2)(4) = 8x^2$ Add Multiply -1x -1x -8x -8x -9x $8x^2$ Solution Set $$=$$ $\left\{\frac{1}{2}, 4\right\}$ # Example #8 $$\frac{x-1}{x+3} + \frac{x+3}{x-1} = \frac{13}{6}$$ # **Solution:** $$\frac{\overline{x-1}}{x+3} + \frac{x+3}{x-1} = \frac{13}{6}$$ Let $$\frac{x-1}{x+3} = y$$ then $\frac{x+3}{x-1} = \frac{1}{y}$ $$y + \frac{1}{y} = \frac{13}{6}$$ Multiply all terms by 6y $$6y \times y + 6y \times \frac{1}{y} = \frac{13}{6} \times 6y$$ $$6v^2 + 6 = 13v$$ $$6v^2 + 6 - 13v = 0$$ $$6v^2 - 13v + 6 = 0$$ $$6y^2 - 4y - 9y + 6 = 0$$ $$2y(3y-2) - 3(3y-2) = 0$$ $$(3y - 2)(2y - 3) = 0$$ # R.W $(6y^{2})(6) = 36y^{2}$ Add Multiply -4y -4y -9y -9y $-13y 36y^{2}$ # Chapter # 1 # Ex # 1.2 $$3y - 2 = 0$$ or $2y - 3 = 0$ $$3y = 2$$ or $2y = 3$ $$y = \frac{2}{3} \quad or \quad y = \frac{3}{2}$$ $$But \ y = \frac{x-1}{x+3}$$ $$\frac{x-1}{x+3} = \frac{2}{3}$$ or $\frac{x-1}{x+3} = \frac{3}{2}$ # By cross multiplication $$3(x-1) = 2(x+3)$$ or $2(x-1) = 3(x+3)$ $$3x - 3 = 2x + 6$$ or $2x - 2 = 3x + 9$ $$3x - 2x = 6 + 3$$ or $2x - 3x = 9 + 2$ $$x = 9$$ or $-1x = 11$ $$x = 9$$ or $x = -11$ Solution Set = $\{9, -11\}$ # Type 3: Receproccal equation $$a\left(x^2 + \frac{1}{x^2}\right) + b\left(x + \frac{1}{x}\right) + c = 0$$ Example # 9 (i) $$\frac{2\left(x^2 + \frac{1}{x^2}\right) - 9\left(x + \frac{1}{x}\right) + 14 = 0$$ # Solution $$2\left(x^{2} + \frac{1}{x^{2}}\right) - 9\left(x + \frac{1}{x}\right) + 14 = 0 - -\text{equ (i)}$$ R.W -5y -9v $(2y^2)(10) = 20y^2$ Multiply -4v $20v^2$
Let $$x + \frac{1}{x} = y$$ # Taking square on B. S $$\left(x + \frac{1}{x}\right)^2 = y^2$$ $$x^2 + \frac{1}{x^2} + 2 = y^2$$ $$x^2 + \frac{1}{x^2} = y^2 - 2$$ So equ (i) becomes $$2(y^2 - 2) - 9(y) + 14 = 0$$ $$2y^2 - 4 - 9y + 14 = 0$$ $$2y^2 - 9y - 4 + 14 = 0$$ $$2y^2 - 9y + 10 = 0$$ $$2y^2 - 4y - 5y + 10 = 0$$ $$2y(y-2) - 5(y-2) = 0$$ $$(y-2)(2y-5) = 0$$ $$y - 2 = 0$$ or $2y - 5 = 0$ $$y = 2$$ or $2y = 5$ $$y = 2$$ or $y = \frac{5}{2}$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 R.W $(x^2)(1) = 1x^2$ R.W $(2x^2)(2) = 4x^2$ Add -5x Multiply -1x $4x^2$ Multiply -1x $\frac{-1x}{1x^2}$ Add -1x -1x -2x $$But \ y = x + \frac{1}{x}$$ $$x + \frac{1}{x} = 2$$ or $x + \frac{1}{x} = \frac{5}{2}$ # Now $$x + \frac{1}{x} = 2$$ Multiply all terms by x $$x. x + x. \frac{1}{x} = 2. x$$ $$x^2 + 1 = 2x$$ $$x^2 + 1 - 2x = 0$$ $$x^2 - 2x + 1 = 0$$ $$x^2 - 1x - 1x + 1 = 0$$ $$x(x-1) - 1(x-1) = 0$$ $$(x-1)(x-1)=0$$ $$x - 1 = 0$$ or $x - 1 = 0$ $$x = 1$$ or $x = 1$ # Also $$x + \frac{1}{x} = \frac{5}{2}$$ Multiply all terms by 3x $$2x. x + 2x. \frac{1}{x} = \frac{5}{2}. 2x$$ $$2x^2 + 2 = 5x$$ $$2x^2 + 2 - 5x = 0$$ $$2x^2 - 5x + 2 = 0$$ $$2x^2 - 1x - 4x + 2 = 0$$ $$x(2x-1) - 2(2x-1) = 0$$ $$(2x-1)(x-2)=0$$ $$2x - 1 = 0$$ or $x - 2 = 0$ $$2x = 1$$ or $x = 2$ $$x = \frac{1}{2}$$ or $x = 2$ Solution Set = $\left\{1, \frac{1}{2}, 2\right\}$ # Example #9 (ii) $$8\left(x^2 + \frac{1}{x^2}\right) - 42\left(x - \frac{1}{x}\right) + 29 = 0$$ # **Solution**: $$8\left(x^2 + \frac{1}{x^2}\right) - 42\left(x - \frac{1}{x}\right) + 29 = 0 - \text{equ (i)}$$ Let $x - \frac{1}{x} = y$ # Chapter # 1 # Ex # 1.2 # Taking square on B. S $$\left(x - \frac{1}{x}\right)^2 = y^2$$ $$x^2 + \frac{1}{x^2} - 2 = y^2$$ $$x^2 + \frac{1}{x^2} = y^2 + 2$$ | R.W | | | |-----------------------|------------|--| | $(8y^2)(45) = 360y^2$ | | | | Add | Multiply | | | -12y | -12y | | | -30y | -30y | | | -42y | $360y^{2}$ | | So equ (i) becomes $$8(y^2 + 2) - 42(y) + 29 = 0$$ $$8v^2 + 16 - 42v + 29 = 0$$ $$8v^2 - 42v + 45 = 0$$ $$8v^2 - 12v - 30v + 45 = 0$$ $$4y(2y-3) - 15(2y-3) = 0$$ $$(2y-3)(4y-15)=0$$ $$2y - 3 = 0$$ or $4y - 15 = 0$ $$2y = 3$$ or $4y = 15$ $$y = \frac{3}{2}$$ or $y = \frac{15}{4}$ $$x - \frac{1}{x} = \frac{3}{2}$$ or $x - \frac{1}{x} = \frac{15}{4}$ # Now $$x - \frac{1}{x} = \frac{3}{2}$$ Multiply all terms by 2x $$2x \cdot x - 2x \cdot \frac{1}{x} = \frac{3}{2} \cdot 2x$$ $$2x^2 - 2 = 3x$$ $$2x^2 - 2 - 3x = 0$$ $$2x^2 - 3x - 2 = 0$$ $$2x^2 + 1x - 4x - 2 = 0$$ $$x(2x+1) - 2(2x+1) = 0$$ $$(2x+1)(x-2)=0$$ $$2x + 1 = 0$$ or $x - 2 = 0$ $$2x = -1$$ or $x = 2$ $$x = \frac{-1}{2} \quad or \quad x = 2$$ # Also $$x - \frac{1}{x} = \frac{15}{4}$$ Multiply all terms by 4x $$4x. x - 4x. \frac{1}{x} = \frac{15}{4}. 4x$$ $$4x^2 - 4 = 15x$$ $$4x^2 - 4 - 15x = 0$$ $$4x^2 - 15x - 4 = 0$$ $$4x^2 + 1x - 16x - 4 = 0$$ | R.W | | | |-----------------------|------------|--| | $(4x^2)(-4) = -16x^2$ | | | | Add | Multiply | | | +1x | +1x | | | -16x | -16x | | | -15x | $-16x^{2}$ | | R.W Add +1x -4x -3x $(2x^2)(-2) = -4x^2$ Multiply -4x +1x $-4x^{2}$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 $$x(4x + 1) - 4(4x + 1) = 0$$ $$(4x + 1)(x - 4) = 0$$ $$4x + 1 = 0 \quad or \quad x - 4 = 0$$ $$4x = -1 \quad or \quad x = 4$$ $$x = \frac{-1}{4} \quad or \quad x = 4$$ Solution Set = $$\left\{ \frac{-1}{2}, 2, \frac{-1}{4}, 4 \right\}$$ # **Type 4: Exponential Equation** Equations that involves terms of the form a^x where a > 0, $a \ne 1$ are called **exponential** equations # **Steps** - 1. Put $a^x = y$ - 2. We get quadratic equation. - 3. Solve Quadratic equation in term of y on any method. - 4. Then put again a^x and solve for x # Note: One – to – One Property of Exponential Functions If $b^n = b^m$ then n = m # Example # 10 Solve $4.2^{2x} - 10.2^x + 4 = 0$ # **Solution:** $$4. 2^{2x} - 10. 2^{x} + 4 = 0$$ $$4. (2^{x})^{2} - 10. 2^{x} + 4 = 0$$ Let $2^{x} = y$ $$4(y)^{2} - 10y + 4 = 0$$ $$2(2y^{2} - 5y + 2) = 0$$ Divide by $2(2y^{2} - 5y + 2) = 0$ Divide by $2(2y^{2} - 5y + 2) = 0$ $$2(2y^{2} - 1y - 4y + 2) = 0$$ $$2(2y^{2} - 1y - 4y + 2) = 0$$ $$2(2y^{2} - 1)(y^{2} - 2) = 0$$ $$2(2y^{2} - 1)(y^{2} - 2) = 0$$ $$2(2y^{2} - 1)(y^{2} - 2) = 0$$ | But $y = 2^{x}$ | | | |---------------------|------|-------------| | $2^x = \frac{1}{2}$ | or I | $2^x = 2$ | | $2^x = 2^{-1}$ | or | $2^x = 2^1$ | | x = -1 | or · | x = 1 | 2y = 1 or y = 2 $y = \frac{1}{2}$ or y = 2 # Chapter # 1 # Ex # 1.2 Example # 11 Solve $2^{2+x} + 2^{2-x} = 10$ **Solution:** $$\frac{2^{2+x}}{2^{2+x}} + 2^{2-x} = 10$$ $$2^2 \cdot 2^x + 2^2 \cdot 2^{-x} = 10$$ $$4.2^x + \frac{4}{2^x} - 10 = 0$$ Let $$2^x = y$$ $$4y + \frac{4}{y} - 10 = 0$$ | R.W | | | |--------------------|----------|--| | $(2y^2)(2) = 4y^2$ | | | | Add | Multiply | | | -1y | -1y | | | -4y | -4y | | | -5y | $4y^2$ | | Multiply all terms by y $$4y. y + \frac{4}{y}. y - 10. y = 0. y$$ $$4y^2 + 4 - 10y = 0$$ $$4v^2 - 10v + 4 = 0$$ $$2(2v^2 - 5v + 2) = 0$$ $$2y^2 - 5y + 2 = 0$$ Divide by 2 $$2y^2 - 1y - 4y + 2 = 0$$ $$y(2y-1) - 2(2y-1) = 0$$ $$(2y-1)(y-2)=0$$ $$2y - 1 = 0$$ or $y - 2 = 0$ $$2y = 1 \quad or \quad y = 2$$ $$y = \frac{1}{2}$$ or $y = 2$ But $$y = 2^x$$ $$2^x = \frac{1}{2} \quad or \quad 2^x = 2$$ $$2^x = 2^{-1}$$ or $2^x = 2^1$ $$x = -1$$ or $x = 1$ Solution Set = $$\{-1, 1\}$$ Type 4: $$(x + a)(x + b)(x + c)(x + d) = k$$ where $a + b = c + d$ # Example # 12 $$(x+1)(x+3)(x-2)(x-4) = 24$$ # **Solution:** R.W $(2y^2)(2) = 4y^2$ Multiply -1v Add -1v -4y −5v $$(x+1)(x+3)(x-2)(x-4) = 24$$ Re – arrange it accordingly $1 + (-2) = 3 + (-4)$ $$\{(x+1)(x-2)\}\{(x+3)(x-4)\} = 24$$ $$(x^2 - 2x + 1x - 2)(x^2 - 4x + 3x - 12) = 24$$ $$(x^2 - 1x - 2)(x^2 - 1x - 12) = 24$$ $$(x^2 - 1x - 2)(x^2 - 1x - 12) - 24 = 0$$ Let $$x^2 - 1x = y$$ $$(y-2)(y-12)-24=0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- $$y^{2} - 12y - 2y + 24 - 24 = 0$$ $$y^{2} - 14y = 0$$ $$y(y - 14) = 0$$ $$y(y-14)=0$$ $$y = 0 \quad or \quad y - 14 = 0$$ $$y = 0$$ or $y = 14$ **But** $$y = x^2 - 1x$$ $$x^{2} - 1x = 0$$ or $x^{2} - 1x = 14$ $x^{2} - 1x = 0$ or $x^{2} - 1x - 14 = 0$ # Now $$x^2 - 1x = 0$$ $$x(x-1)=0$$ $$x = 0$$ or $x - 1 = 0$ $$x = 0$$ or $x = 1$ # Also $$x^2 - 1x - 14 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1$$, $b = -1$, $c = -14$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-1) \pm \sqrt{(-1)^2 + 4(1)(-14)}}{2(1)}$$ $$x = \frac{1 \pm \sqrt{1 + 56}}{2}$$ $$x = \frac{1 \pm \sqrt{57}}{2}$$ Solution Set = $$\left\{ \mathbf{0}, \mathbf{1}, \frac{1 \pm \sqrt{57}}{2} \right\}$$ # Ex # 1.2 # Page # 15 R.W $(y^2)(4) = 4y^2$ Multiply -1y $4v^2$ -4y Add -1y -4y -5y # O1: Solve the following equations. (i) $$x^4 - 5x^2 + 4 = 0$$ # **Solution:** $$x^{4} - 5x^{2} + 4 = 0$$ $$(x^{2})^{2} - 5x^{2} + 4 = 0$$ Let $x^{2} = y$ $$(y)^{2} - 5y + 4 = 0$$ $$y^{2} - 5y + 4 = 0$$ $$y^{2} - 1y - 4y + 4 = 0$$ $$y(y-1) - 4(y-1) = 0$$ $$(y-1)(y-4) = 0$$ # Chapter # 1 R.W $(v^2)(12) = 12y^2$ Multiply -3v $12y^2$ R.W $(6y^2)(5) = 30y^2$ Multiply -3y $30v^{2}$ -10y Add -3y -10v -13y Add -3y -4y -7y $$y-1=0 \quad or \quad y-4=0$$ $$y=1 \quad or \quad y=4$$ But $$y = x^2$$ $$x^2 = 1$$ or $x^2 = 4$ $$\sqrt{x^2} = \pm \sqrt{1} \quad or \quad \sqrt{x^2} = \pm \sqrt{4}$$ $$x = \pm 1$$ or $x = \pm 2$ Solution Set = $$\{\pm 1, \pm 2\}$$ # (ii) $x^4 - 7x^2 + 12 = 0$ # **Solution:** $$x^{4} - 7x^{2} + 12 = 0$$ $$(x^{2})^{2} - 7x^{2} + 12 = 0$$ Let $x^{2} = y$ $$(y)^{2} - 7y + 12 = 0$$ $$(y)^2 - 7y + 12 = 0$$ $$y^2 - 7y + 12 = 0$$ $$y^2 - 3y - 4y + 12 = 0$$ $$y(y-3) - 4(y-3) = 0$$ $$(y-3)(y-4)=0$$ $$y - 3 = 0$$ or $y - 4 = 0$ $$y = 3$$ or $y = 4$ But $$y = x^2$$ $$x^2 = 3 \quad or \quad x^2 = 4$$ $$\sqrt{x^2} = \pm \sqrt{3} \quad or \quad \sqrt{x^2} = \pm \sqrt{4}$$ $$x = \pm \sqrt{3}$$ or $x = \pm 2$ Solution Set = $\{\pm\sqrt{3},\pm2\}$ ## $6x^4 - 13x^2 + 5 = 0$ (iii) # **Solution:** $$6x^4 - 13x^2 + 5 = 0$$ $$6(x^2)^2 - 13x^2 + 5 = 0$$ Let $$x^2 = y$$ $$6(y)^2 - 13y + 5 = 0$$ $$6y^2 - 13 + 5 = 0$$ $$6y^2 - 3y - 10y + 5 = 0$$ $$3y(2y-1) - 5(2y-1) = 0$$ $$(2y - 1)(3y - 5) = 0$$ $$2y - 1 = 0$$ or $3y - 5 = 0$ $$2y = 1 \quad or \quad 3y = 5$$ $$y = \frac{1}{2} \quad or \quad y = \frac{5}{3}$$ But $$y = x^2$$ $$x^2 = \frac{1}{2}$$ or $x^2 = \frac{5}{3}$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- | $\mathbf{E}\mathbf{x}$ | # | 1 | 2 | |------------------------|---|---|---| $$\sqrt{x^2} = \pm \sqrt{\frac{1}{2}} \quad or \quad \sqrt{x^2} = \pm \sqrt{\frac{5}{3}}$$ $$x = \pm \frac{1}{\sqrt{2}} \quad or \quad x = \pm \sqrt{\frac{5}{3}}$$ Solution Set = $$\left\{\pm \frac{1}{\sqrt{2}}, \pm \sqrt{\frac{5}{3}}\right\}$$ (iv) $$x+2-\frac{1}{x+2}=\frac{3}{2}$$ Solution: $$x + 2 - \frac{1}{x+2} = \frac{3}{2}$$ $$y - \frac{1}{y} = \frac{3}{2}$$ | пс | c 20 | | _ | |-----|----------------|---|---| | | 1 | | | | у - | $-\frac{1}{y}$ | = | 2 | | | 1 | 1 | | | R.W | | |----------------------|----------| | $(2y^2)(-2) = -4y^2$ | | | Add | Multiply | | +1y | +1y | | -4y | -4y | | 2 | 42 | Multiply all terms by 2y = -3y $$2y \times y - 2y \times \frac{1}{y} = \frac{3}{2} \times 2y$$ $$2y^2 - 2 = 3y$$ $$2y^2 - 2 - 3y = 0$$ $$2y^2 - 3y - 2 = 0$$ $$2y^2 + 1y - 4y - 2 = 0$$ $$y(2y+1) - 2(2y+1) = 0$$ $$(2y+1)(y-2)=0$$ $$2y + 1 = 0$$ or $y - 2 = 0$ $$2y = -1 \quad or \quad y = 2$$ $$y = \frac{-1}{2}$$ or $y = 2$ But $$v = x + 2$$ $$x + 2 = \frac{-1}{2}$$ or $x + 2 = 2$ $$x = \frac{-1}{2} - 2$$ or $x = 2 - 2$ $$x = \frac{-1-4}{2} \quad or \quad x = 0$$ $$x = \frac{-5}{2} \quad or \quad x = 0$$ Solution Set = $$\left\{ \frac{-5}{2}, 0 \right\}$$ $$(\mathbf{v}) \mid x - \frac{4}{x} = 2$$ Solution: $$x - \frac{4}{x} = 2$$ # Chapter # 1 # Ex # 1.2 Multiply all terms by x $$x.x - x.\frac{4}{x} = 2.x$$ $$x^2 - 4 = 2x$$ $$x^2 - 4 - 2x = 0$$ $$x^2 - 2x - 4 = 0$$ Compare it with $ax^2 + bx + c
= 0$ Here $$a = 1, b = -2, c = -4$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)}$$ $$x = \frac{2 \pm \sqrt{4 + 16}}{2}$$ $$x = \frac{2 \pm \sqrt{20}}{2}$$ $$x = \frac{2 \pm \sqrt{20}}{2}$$ $$x = \frac{2 \pm \sqrt{4 \times 5}}{2}$$ $$x = \frac{2 \pm 2\sqrt{5}}{2}$$ $$x = \frac{2(1 \pm \sqrt{5})}{2}$$ $$x = 1 \pm \sqrt{5}$$ $$x = 1 + \sqrt{5} \quad or \quad x = 1 - \sqrt{5}$$ Solution Set $$=\left\{1+\sqrt{5}\right.$$, $1-\sqrt{5}\right\}$ (vi) $$\frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{5}{6}$$ # **Solution:** $$\frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{5}{6}$$ Let $$\frac{x+2}{x-2} = y$$ then $\frac{x-2}{x+2} = \frac{1}{y}$ $$y - \frac{1}{y} = \frac{5}{6}$$ Multiply all terms by 6y $$6y \times y - 6y \times \frac{1}{y} = \frac{5}{6} \times 6y$$ $$-5y$$ $$6y^2 - 6 = 5y$$ $$6y^2 - 6 - 5y = 0$$ R.W $$(6y^{2})(-6) = -36y^{2}$$ Add Multiply $$+4y +4y -9y -9y -5y -36y^{2}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 $$6y^2 - 5y - 6 = 0$$ $$6y^2 + 4y - 9y - 6 = 0$$ $$2y(3y+2) - 3(3y+2) = 0$$ $$(3y+2)(2y-3) = 0$$ $$3y + 2 = 0$$ or $2y - 3 = 0$ $$3y = -2$$ or $2y = 3$ $$y = \frac{-2}{3} \quad or \quad y = \frac{3}{2}$$ $$But \ y = \frac{x+2}{x-2}$$ $$\frac{x+2}{x-2} = \frac{-2}{3}$$ or $\frac{x+2}{x-2} = \frac{3}{2}$ # By cross multiplication $$3(x+2) = -2(x-2)$$ or $2(x+2) = 3(x-2)$ $$3x + 6 = -2x + 4$$ or $2x + 4 = 3x - 6$ $$3x + 2x = 4 - 6$$ or $2x - 3x = -6 - 4$ $$5x = -2$$ or $-1x = -10$ $$x = \frac{-2}{5} \quad or \quad x = 10$$ Solution Set = $$\left\{ \frac{-2}{5}, 10 \right\}$$ # (vii) $3\left(x^2 + \frac{1}{r^2}\right) - 16\left(x + \frac{1}{x}\right) + 26 = 0$ $$3\left(x^2 + \frac{1}{x^2}\right) - 16\left(x + \frac{1}{x}\right) + 26 = 0 \dots \text{ equ (i)}$$ R.W $(3v^2)(20) = 60v^2$ Multiply -6y -10v $-60v^{2}$ Add -6y -10v -60v $$Let \ x + \frac{1}{x} = y$$ # Taking square on B. S $$\left(x + \frac{1}{x}\right)^2 = y^2$$ $$x^2 + \frac{1}{x^2} + 2 = y^2$$ | ;² - | $-\frac{1}{x^2} + 2 = y^2$ $-\frac{1}{x^2} = y^2 - 2$ | | |------|---|--| | ;² - | $-\frac{1}{x^2} = y^2 - 2$ | | | $x^2 + \frac{1}{x^2} = y^2 - 2$ | |---------------------------------| | So equ (i) become | So equ (i) becomes $$3(y^2 - 2) - 16(y) + 26 = 0$$ $$3v^2 - 6 - 16v + 26 = 0$$ $$3v^2 - 16v - 6 + 26 = 0$$ $$3v^2 - 16v + 20 = 0$$ $$3y^2 - 6y - 10y + 20 = 0$$ $$3y(y-2) - 10(y-2) = 0$$ $$(y-2)(3y-10)=0$$ $$y - 2 = 0$$ or $3y - 10 = 0$ # Chapter # 1 $$y = 2$$ or $3y = \overline{10}$ $$y = 2 \quad or \quad y = \frac{10}{3}$$ But $$y = x + \frac{1}{x}$$ $$x + \frac{1}{x} = 2$$ or $x + \frac{1}{x} = \frac{10}{3}$ $$x + \frac{1}{x} = 2$$ Multiply all terms by x $$x. x + x. \frac{1}{x} = 2.x$$ $$x^2 + 1 = 2x$$ $$x^2 + 1 = 2x$$ $$x^2 + 1 - 2x = 0$$ $$x^2 - 2x + 1 = 0$$ $$x^2 - 1x - 1x + 1 = 0$$ $$x(x-1) - 1(x-1) = 0$$ $$(x-1)(x-1)=0$$ $$x - 1 = 0 \quad or \quad x - 1 = 0$$ $$x = 1$$ or $x = 1$ # Also $$x + \frac{1}{x} = \frac{10}{3}$$ Multiply all terms by 3x $$3x \cdot x + 3x \cdot \frac{1}{x} = \frac{10}{3} \cdot 3x$$ $$3x^2 + 3 = 10x$$ $$3x^2 + 3 - 10x = 0$$ $$3x^2 - 10x + 3 = 0$$ $$3x^2 - 1x - 9x + 3 = 0$$ $$x(3x-1) - 3(3x-1) = 0$$ $$(3x-1)(x-3)=0$$ $$3x - 1 = 0$$ or $x - 3 = 0$ $$3x = 1$$ or $x = 3$ $$x = \frac{1}{3} \quad or \quad x = 3$$ Solution Set = $$\left\{1, \frac{1}{3}, 3\right\}$$ R.W $$(x^2)(1) = x^2$$ Add Multiply $$-1x -1x$$ $$-1x -1x$$ R.W $(3x^2)(3) = 9x^2$ Add -1x -9x -10x Multiply -1x -9x $9x^2$ -2x Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- $(y^2)(16) = 16y^2$ R.W $(x^2)(1) = x^2$ Multiply -1x Add -1x $16y^{2}$ # (viii) $\left| \left(x + \frac{1}{x} \right)^2 - 10 \left(x + \frac{1}{x} \right) + 16 = 0 \right|$ # $\left(x + \frac{1}{x}\right)^2 - 10\left(x + \frac{1}{x}\right) + 16 = 0$ Let $$x + \frac{1}{x} = y$$ $(y)^2 - 10(y) + 16 = 0$ $$x$$ $(y)^2 - 10(y) + 16 = 0$ $y^2 - 10y + 16 = 0$ $y^2 - 2y - 8y + 16 = 0$ $(y^2)(16) = 16y^2$ Add Multiply $-2y$ $-2y$ $-8y$ $-8y$ $-10y$ $16y^2$ $$y(y-2) - 8(y-2) = 0$$ $$(y-2)(y-8)=0$$ $$y - 2 = 0$$ or $y - 8 = 0$ $$y = 2$$ or $y = 8$ $$But \ y = x + \frac{1}{x}$$ $$x + \frac{1}{x} = 2 \quad or \quad x + \frac{1}{x} = 8$$ $$x + \frac{1}{x} = 2$$ Multiply all terms by x $$x.x + x.\frac{1}{x} = 2.x$$ $$x^2 + 1 = 2x$$ $$x^2 + 1 - 2x = 0$$ $$x^2 - 2x + 1 = 0$$ $$x^2 - 1x - 1x + 1 = 0$$ $$x - 1x - 1x + 1 = 0$$ $x(x - 1) - 1(x - 1) = 0$ $$(x-1)(x-1) = 0$$ $$x - 1 = 0$$ or $x - 1 = 0$ $$x = 1$$ or $x = 1$ # Also $$x + \frac{1}{x} = 8$$ Multiply all terms by x $$x. x + x. \frac{1}{x} = 8. x$$ $$x^2 + 1 = 8x$$ $$x^2 - 8x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -8, c = 1$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ # Chapter # 1 # Ex # 1.2 Put the values $$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(1)}}{2(1)}$$ $$x = \frac{8 \pm \sqrt{64 - 4}}{2}$$ $$x = \frac{8 \pm \sqrt{60}}{2}$$ $$x = \frac{8 \pm \sqrt{60}}{2}$$ $$x = \frac{8 \pm \sqrt{4 \times 15}}{2}$$ $$x = \frac{8 \pm 2\sqrt{15}}{2}$$ $$x = \frac{2(4 \pm \sqrt{15})}{2}$$ $$x = 4 \pm \sqrt{15}$$ **Solution Set** = $\{1, 4 \pm \sqrt{15}\}$ (ix) $$\left(x^2 + \frac{1}{x^2}\right) - \left(x - \frac{1}{x}\right) - 4 = 0$$ $$\frac{x^2 + \frac{1}{x^2}}{\left(x^2 + \frac{1}{x^2}\right) - \left(x - \frac{1}{x}\right) - 4 = 0 \quad - - \text{equ (i)}$$ $$\text{Let } x - \frac{1}{x} = y$$ R.W $(y^2)(-2) = -2y^2$ Multiply +1v $-2v^{2}$ Add +1y -2y -y Taking square on B. S $$\left(x - \frac{1}{x}\right)^2 = y^2$$ $$x^2 + \frac{1}{x^2} - 2 = y^2$$ $$x^2 + \frac{1}{x^2} = y^2 + 2$$ So equ (i) becomes $$y^{2} + 2 - y - 4 = 0$$ $$y^{2} - y + 2 - 4 = 0$$ $$y^2 - y - 2 = 0$$ $$y^2 + 1y - 2y - 2 = 0$$ $$y(y+1) - 2(y+1) = 0$$ $$(y+1)(y-2) = 0$$ $$v + 1 = 0$$ or $v - 2 = 0$ $$y = -1$$ or $y = 2$ $$But y = x - \frac{1}{x}$$ $$x - \frac{1}{x} = -1 \quad or \quad x - \frac{1}{x} = 2$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 # Now $$x - \frac{1}{x} = -1$$ Multiply all terms by x $$x. x - x. \frac{1}{x} = -1. x$$ $$x^2 - 1 = -x$$ $$x^2 - 1 + x = 0$$ $$x^2 + x - 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ *Here* a = 1, b = 1, c = -1 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(-1)}}{2(1)}$$ $$x = \frac{-1 \pm \sqrt{1+4}}{2}$$ $$x = \frac{-1 \pm \sqrt{5}}{2}$$ $$x - \frac{1}{r} = 2$$ Multiply all terms by x $$x. x - x. \frac{1}{x} = 2. x$$ $$x^2 - 1 = 2x$$ $$x^2 - 2x - 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = -2, c = -1 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-1)}}{2(1)}$$ $$x = \frac{2 \pm \sqrt{4+4}}{2}$$ $$x = \frac{2 \pm \sqrt{8}}{2}$$ $$x = \frac{2 \pm \sqrt{4 \times 2}}{2}$$ $$x = \frac{2 \pm 2\sqrt{2}}{2}$$ # Chapter # 1 R.W $(9v^2)(1) = 9v^2$ -1y -9y -10y Multiply -1y -9y $9v^2$ Multiply -1v $9v^2$ $(v^2)(9) = 9y^2$ Add -1v -9y -10y $$x = \frac{2\left(1 \pm \sqrt{2}\right)}{2}$$ $$x = 1 + \sqrt{2}$$ Solution Set $$=\left\{\frac{-1\pm\sqrt{5}}{2},1\pm\sqrt{2}\right\}$$ # (x) $3^{2x} - 10.3^x + 9 = 0$ # **Solution:** $$3^{2x} - 10.3^{x} + 9 = 0$$ $$(3^{x})^{2} - 10.3^{x} + 9 = 0$$ Let $$3^x = y$$ $$(y)^2 - 10y + 9 = 0$$ $$y^2 - 10y + 9 = 0$$ $$y^2 - 1y - 9y + 9 = 0$$ $$y(y-1) - 9(y-1) = 0$$ $$(y-1)(y-9)=0$$ $$y - 1 = 0$$ or $y - 9 = 0$ $$y = 1$$ or $y = 9$ But $$y = 3^x$$ $$3^x = 1 \quad or \quad 3^x = 9$$ $$3^x = 3^0$$ or $3^x = 3^2$ $$x = 0$$ or $x = 2$ **Solution Set** = $\{0, 2\}$ ## $3.3^{2x+1}-10.3^x+1=0$ (xi) $$3.3^{2x+1} - 10.3^x + 1 = 0$$ $$3.3^{2x}.3^1 - 10.3^x + 1 = 0$$ $$3.3.3^{2x} - 10.3^x + 1 = 0$$ $$9.3^{2x} - 10.3^x + 1 = 0$$ $$9.(3^x)^2 - 10.3^x + 1 = 0$$ Let $$3^x = y$$ $$9(y)^2 - 10y + 1 = 0$$ $$9y^2 - 10y + 1 = 0$$ $$9y^2 - 1y - 9y + 1 = 0$$ $$y(9y-1) - 1(9y-1) = 0$$ $$(9y - 1)(y - 1) = 0$$ $$9y - 1 = 0$$ or $y - 1 = 0$ $$9y = 1 \quad or \quad y = 1$$ $$y = \frac{1}{9} \quad or \quad y = 1$$ But $$y = 3^{\circ}$$ But $$y = 3^x$$ $$3^x = \frac{1}{9} \quad or \quad 3^x = 1$$ ${\bf Facebook:} \ \underline{https://web.facebook.com/TehkalsDotCom/}$ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 $$3^{x} = \frac{1}{3^{2}} \quad or \quad 3^{x} = 3^{0}$$ $$3^{x} = 3^{-2} \quad or \quad x = 0$$ $$x = -2 \quad or \quad x = 0$$ Solution Set = {-2, 0} (xii) $$\int 5^{x+1} + 5^{2-x} = 126$$ # **Solution:** $$5^{x+1} + 5^{2-x} = 126$$ $5^x \cdot 5^1 + 5^2 \cdot 5^{-x} = 126$ $$5.5^x + \frac{5^2}{5^x} = 126$$ Let $$5^x = y$$ $$5y + \frac{25}{y} = 126$$ | R.W | | |-----------------------|-------------| | $(5y^2)(25) = 125y^2$ | | | Add | Multiply | | -1y | -1 <i>y</i> | | -125y | -125y | | -126y | $125y^2$ | # Multiply all terms by y $$5y \times y + \frac{25}{y} \times y = 126 \times y$$ $$5v^2 + 25 = 126v$$ $$5v^2 + 25 - 126v = 0$$ $$5y^2 - 126y + 25 = 0$$ $$5y^2 - 1y - 125y + 25 = 0$$ $$y(5y-1) - 25(5y-1) = 0$$ $$(5y-1)(y-25)=0$$ $$5y - 1 = 0$$ or $y - 25 = 0$ $$5y = 1$$ or $y = 25$ $$y = \frac{1}{5} \quad or \quad y = 25$$ But $$y = 5^x$$ $$5^x = \frac{1}{5}$$ or $5^x = 25$ $$5^x = 5^{-1}$$ or $5^x = 5^2$ $$x = -1$$ or $x = 2$ # Solution Set = $\{-1, 2\}$ (xiii) $$(x-3)(x+9)(x+5)(x-7) = 385$$ # **Solution:** $$(x-3)(x+9)(x+5)(x-7) = 385$$ Re – arrange it accordingly – $$3 + 5 = 9 - 7$$ $$\{(x-3)(x+5)\}\{(x+9)(x-7)\} = 385$$ $$(x^2 + 5x - 3x - 15)(x^2 - 7x + 9x - 63) = 385$$ $$(x^2 + 2x - 15)(x^2 + 2x - 63) - 385 = 0$$ **Let** $$x^2 + 2x = y$$ $$(y-15)(y-63)-385=0$$ $$y^2 - 63y - 15y + 945 - 385 = 0$$ # Chapter # 1 # Ex # 1.2 $$y^{2} - 78y + 560 = 0$$ $$y^{2} - 8y - 70y + 560 = 0$$ $$y(y - 8) - 70(y - 8) = 0$$ $$(y - 8)(y - 70) = 0$$ $$y - 8 = 0 \quad or \quad y - 70 = 0$$ $$y = 8 \quad or \quad y = 70$$ | R.W | | |-----------------------|-------------| | $(y^2)(560) = 560y^2$ | | | Add Multiply | | | -8y | -8 <i>y</i> | | -70y | -70y | | -78y | $560y^{2}$ | **But** $y = x^2 + 2x$ $$x^2 + 2x = 8$$ or $x^2 + 2x = 70$ $$x^2 + 2x -
8 = 0$$ or $x^2 + 2x - 70 = 0$ # Now $$x^{2} + 2x - 8 = 0$$ $$x^{2} - 2x + 4x - 8 = 0$$ $$x(x - 2) + 4(x - 2) = 0$$ $$(x - 2)(x + 4) = 0$$ | R.W | | | |---------------------|-----------|--| | $(x^2)(-8) = -8x^2$ | | | | Add Multiply | | | | -2x | -2x | | | +4x | +4x | | | 2 <i>x</i> | $-8x^{2}$ | | $$x - 2 = 0 \quad or \quad x + 4 = 0$$ $$x = 2$$ or $x = -4$ # Also $$x^2 + 2x - 70 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 2, c = -70$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(1)(-70)}}{2(1)}$$ $$x = \frac{-2 \pm \sqrt{4 + 280}}{2}$$ $$x = \frac{-2 \pm \sqrt{284}}{2}$$ $$x = \frac{-2 \pm \sqrt{4 \times 71}}{2}$$ $$x = \frac{-2 \pm 2\sqrt{71}}{2}$$ $$x = \frac{2\left(-1 \pm \sqrt{71}\right)}{2}$$ $$x = -1 \pm \sqrt{71}$$ **Solution Set** = $\{2, -4, -1 \pm \sqrt{71}\}$ (xiv) $$(x+1)(x+2)(x+3)(x+4)+1=0$$ # **Solution:** $$(x + 1)(x + 2)(x + 3)(x + 4) + 1 = 0$$ Re – arrange it accordingly $1 + 4 = 2 + 3$ $\{(x + 1)(x + 4)\}\{(x + 2)(x + 3)\} + 1 = 0$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 $$(x^2 + 4x + 1x + 4)(x^2 + 3x + 2x + 6) + 1 = 0$$ $$(x^2 + 5x + 4)(x^2 + 5x + 6) + 1 = 0$$ R.W $(v^2)(25) = 25v^2$ Multiply +5y +5y $25y^{2}$ Add +5y +5y +10y **Let** $$x^2 + 5x = y$$ $$(y+4)(y+6)+1=0$$ $$y^2 + 6y + 4y + 24 + 1 = 0$$ $$y^2 + 10y + 25 = 0$$ $$y^2 + 5y + 5y + 25 = 0$$ $$y(y+5) + 5(y+5) = 0$$ $$(y+5)(y+5) = 0$$ $$y + 5 = 0$$ or $y + 5 = 0$ $$y = -5 \quad or \quad y = -5$$ **But** $$y = x^2 + 5x$$ $$x^2 + 5x = -5$$ $$x^2 + 5x + 5 = 0$$ # Now Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 5, c = 5$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(5) \pm \sqrt{(5)^2 - 4(1)(5)}}{2(1)}$$ $$x = \frac{-5 \pm \sqrt{25 - 20}}{2}$$ $$-5 \pm \sqrt{5}$$ $$x = \frac{-5 + \sqrt{5}}{2}$$ or $x = \frac{-5 - \sqrt{5}}{2}$ Solution Set = $$\left\{ \frac{-5 + \sqrt{5}}{2}, \frac{-5 - \sqrt{5}}{2} \right\}$$ # (xv) (x+1)(x+3)(x+5)(x+7) + 16 = 0 # **Solution:** $$(x+1)(x+3)(x+5)(x+7) + 16 = 0$$ Re – arrange it accordingly $$1 + 7 = 3 + 5$$ $\{(x + 1)(x + 7)\}\{(x + 3)(x + 5)\} + 16 = 0$ $$(x^2 + 7x + 1x + 7)(x^2 + 5x + 3x + 15) + 16 = 0$$ $$(x^2 + 8x + 7)(x^2 + 8x + 15) + 16 = 0$$ Let $$x^2 + 8x = y$$ $(y + 7)(y + 15) + 16 = 0$ $$y^2 + 15y + 7y + 105 + 16 = 0$$ $$y^2 + 22y + 121 = 0$$ $$y^2 + 11y + 11y + 121 = 0$$ # Chapter # 1 # Ex # 1.2 $$y(y + 11) + 11(y + 11) = 0$$ $$(y+11)(y+11)=0$$ $$y + 11 = 0$$ or $y + 11 = 0$ $$y = -11$$ or $y = -11$ **But** $$y = x^2 + 5x$$ $$x^2 + 8x = -11$$ $$x^2 + 8x + 11 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 8, c = 11$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(8) \pm \sqrt{(8)^2 - 4(1)(11)}}{2(1)}$$ $$x = \frac{-8 \pm \sqrt{64 - 44}}{2}$$ $$-8 \pm \sqrt{20}$$ $$x = \frac{-8 \pm \sqrt{20}}{2}$$ $$x = \frac{-8 \pm \sqrt{4 \times 5}}{2}$$ $$x = \frac{-8 \pm 2\sqrt{5}}{2}$$ $$x = \frac{2\left(-4 \pm \sqrt{5}\right)}{2}$$ $$x = -4 \pm \sqrt{5}$$ **Solution Set** = $$\{-4 + \sqrt{5}, -4 - \sqrt{5}\}$$ ## Solve the equation **Q2**: $$x^4 - 2x^3 - 2x^2 + 2x + 1 = 0$$ $$\overline{x^4 - 2x^3} - 2x^2 + 2x + 1 = 0$$ Divide each term by x^2 $$\frac{x^4}{x^2} - \frac{2x^3}{x^2} - \frac{2x^2}{x^2} + \frac{2x}{x^2} + \frac{1}{x^2} = \frac{0}{x^2}$$ $$x^2 - 2x - 2 + \frac{2}{x} + \frac{1}{x^2} = 0$$ Arrange it $$x^2 + \frac{1}{x^2} - 2 - 2x + \frac{2}{x} = 0$$ $$\left(x - \frac{1}{x}\right)^2 - 2\left(x - \frac{1}{x}\right) = 0$$ Let $$x - \frac{1}{x} = y$$ $$(y)^2 - 2(y) = 0$$ $Facebook: \underline{https://web.facebook.com/TehkalsDotCom/}\\$ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.2 $$y^{2}-2y = 0$$ $$y(y-2) = 0$$ $$y = 0 \quad or \quad y-2 = 0$$ $$y = 0 \quad or \quad y = 2$$ $$\mathbf{But} \ y = x - \frac{1}{x}$$ $$x - \frac{1}{x} = 0 \quad or \quad x - \frac{1}{x} = 2$$ # Now $$x - \frac{1}{x} = 0$$ Multiply all terms by x $$x \cdot x - x \cdot \frac{1}{x} = 0 \cdot x$$ $$x^{2} - 1 = 0$$ $$x^{2} = 1$$ $$\sqrt{x^{2}} = \pm \sqrt{1}$$ $$x = +1$$ # Also $$x - \frac{1}{x} = 2$$ Multiply all terms by x $$x. x - x. \frac{1}{x} = 2. x$$ $$x^2 - 1 = 2x$$ $$x^2 - 2x - 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -2, c = -1$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-1)}}{2(1)}$$ $$x = \frac{2 \pm \sqrt{4 + 4}}{2}$$ $$x = \frac{2 \pm \sqrt{8}}{2}$$ $$x = \frac{2 \pm \sqrt{4 \times 2}}{2}$$ $$x = \frac{2 \pm 2\sqrt{2}}{2}$$ $$x = \frac{2(1 \pm \sqrt{2})}{2}$$ # Chapter # 1 # Ex # 1.2 $$x = 1 \pm \sqrt{2}$$ Solution Set = $\{\pm 1, 1 \pm \sqrt{2}\}$ # Ex # 1.3 # **Radical Equation** An equation involving expression under radical sign is called a radical equation. # **Extraneous Solution:** A solution of the transformed equation that does not satisfy the original equation is called an extraneous solution. # Note: To solve radical equation, we take square to simplify square root. Type 1: $$\sqrt{ax+b} = cx+d$$ Example # 13 $$\sqrt{27-3x}=x-3$$ # **Solution:** $$\sqrt{27 - 3x} = x - 3 - - - \text{equ (i)}$$ # Taking square root on B.S $$\left(\sqrt{27 - 3x}\right)^2 = (x - 3)^2$$ $$27 - 3x = (x)^2 - 2(x)(3) + (3)^2$$ $$27 - 3x = x^2 - 6x + 9$$ $$0 = x^2 - 6x + 3x + 9 - 27$$ $$0 = x^2 - 3x - 18$$ $$x^2 - 3x - 18 = 0$$ $$x^{2} + 3x - 6x - 18 = 0$$ $$x(x+3) - 6(x+3) = 0$$ $$(x+3)(x-6) = 0$$ $$x+3 = 0 \text{ or } x-6 = 0$$ $$x = -3 \text{ or } x = 6$$ | IX. W | | |-----------------------|------------| | $(x^2)(-11) = -18x^2$ | | | Add | Multiply | | +3x | +3x | | -6x | -6x | | -3x | $-18x^{2}$ | # Verification: Put x = -3 in equ (i) $$\sqrt{27 - 3(-3)} = -3 - 3$$ $$\sqrt{27+9} = -6$$ $$\sqrt{36} = -6$$ $$6 = -6$$ (Flase) Put x = 6 in equ (i) $$\sqrt{27 - 3(6)} = 6 - 3$$ $$\sqrt{27-18}=3$$ $$\sqrt{9} = 3$$ $$3 = 3$$ (True) Hence x = 1 is an extraneous root. Thus Solution Set $= \{6\}$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Chapter # 1 Type 2: $\sqrt{x+a} + \sqrt{x+b} = \sqrt{x+c}$ Example # 14 $$\sqrt{x+2} + \sqrt{x+7} = \sqrt{x+23}$$ # **Solution:** $$\sqrt{x+2} + \sqrt{x+7} = \sqrt{x+23} - --$$ equ (i) # Taking square root on B. S $$(\sqrt{x+2} + \sqrt{x+7})^2 = (\sqrt{x+23})^2$$ $$(\sqrt{x+2})^2 + (\sqrt{x+7})^2 + 2(\sqrt{x+2})(\sqrt{x+7}) = x+23$$ $$x + 2 + x + 7 + 2\sqrt{(x+2)(x+7)} = x + 23$$ $$2x + 9 + 2\sqrt{x^2 + 7x + 2x + 14} = x + 23$$ $$2\sqrt{x^2 + 9x + 14} = x - 2x + 23 - 9$$ $$2\sqrt{x^2 + 9x + 14} = -x + 14$$ $$2\sqrt{x^2 + 9x + 14} = 14 - x$$ # Taking square root on B. S $$\left(2\sqrt{x^2+9x+14}\right)^2 = (14-x)^2$$ $$4(x^2 + 9x + 14) = (14)^2 - 2(14)(x) + (x)^2$$ $$4x^2 + 36x + 56 = 196 - 28x + x^2$$ $$4x^2 - x^2 + 36x + 28x + 56 - 196 = 0$$ $$3x^2 + 64x - 140 = 0$$ $$3x^2 - 6x + 70x - 140 = 0$$ $$3x(x-2) + 70(x-2) = 0$$ $$(x-2)(3x+70) = 0$$ $x-2 = 0$ or $3x + 70 = 0$ $$x-2 = 0$$ or $3x + 70 = 0$ $x = 2$ or $3x = -70$ $$x = 2 \quad or \quad 3x = -7$$ $$x = 2 \quad or \quad x = \frac{-70}{3}$$ | | R.W
$(3x^2)(-140) = -140x^2$ | | |---|---------------------------------|----------| | | | | | 1 | Add | Multiply | | ı | -6x | -6x | | | +70x | +70x | | | 1.64 | 40.2 | As $$x = \frac{-70}{3}$$ is an extraneous root. # Thus Solution Set = $\{2\}$ Type 2: $$\sqrt{x^2 + px + m} + \sqrt{x^2 + qx + n} = q$$ # Example # 15 $$\sqrt{x^2 + 3x + 5} + \sqrt{x^2 + 3x + 1} = 2$$ # **Solution:** $$\sqrt{x^2 + 3x + 5} + \sqrt{x^2 + 3x + 1} = 2$$ $$\sqrt{x^2 + 3x + 5} = 2 - \sqrt{x^2 + 3x + 1}$$ # Taking square root on B. S $$\left(\sqrt{x^2 + 3x + 5}\right)^2 = \left(2 - \sqrt{x^2 + 3x + 1}\right)^2$$ $$x^{2} + 3x + 5 = (2)^{2} + \left(\sqrt{x^{2} + 3x + 1}\right)^{2} - 2(2)\sqrt{x^{2} + 3x + 1}$$ $$x^2 + 3x + 5 = 4 + x^2 + 3x + 1 - 4\sqrt{x^2 + 3x + 1}$$ $$x^2 + 3x + 5 = x^2 + 3x + 4 + 1 - 4\sqrt{x^2 + 3x + 1}$$ $$5 = 5 - 4\sqrt{x^2 + 3x + 1}$$ $$0 = -4\sqrt{x^2 + 3x + 1}$$ Divide B. S by -4, we get $$0 = \sqrt{x^2 + 3x + 1}$$ $$\sqrt{x^2 + 3x + 1} = 0$$ # Again Take square root on B. S $$\left(\sqrt{x^2 + 3x + 1}\right)^2 = (0)^2$$ $$x^2 + 3x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = 3, c = 1 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(1)(1)}}{2(1)}$$ $$x = \frac{-3 \pm \sqrt{9 - 4}}{2}$$ $$x = \frac{1}{2}$$ $$-3 + \sqrt{5}$$ Solution Set = $$\left\{ \frac{-3 \pm \sqrt{5}}{2} \right\}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- # Ex # 1.3 # Page # 19 R.W $(x^2)(-12) = -12x^2$ Multiply -3x $-12x^{2}$ +4x Add -3x +4x +x # O1: Solve the following equations. $$(i) \quad \sqrt{5x+21} = x+3$$ # Solution: $$\sqrt{5x + 21} = x + 3 - - - \text{equ (i)}$$ # Taking square root on B. S $$(\sqrt{5x+21})^2 = (x+3)^2$$ $$5x + 21 = (x)^2 + 2(x)(3) + (3)^2$$ $$5x + 21 = x^2 + 6x + 9$$ $$0 = x^2 + 6x + 9 - 5x - 21$$ $$0 = x^2 + 6x - 5x + 9 - 21$$ $$0 = x^2 + x - 12$$ $$x^2 + x - 12 = 0$$ $$x^2 - 3x + 4x - 12 = 0$$ $$x(x-3) + 4(x-3) = 0$$ $$(x-3)(x+4)=0$$ $$x - 3 = 0$$ or $x + 4 = 0$ $$x = 3$$ or $x = -4$ # **Verification**: Put x = 3 in equ (i) $$\sqrt{5(3) + 21} = 3 + 3$$ $$\sqrt{15 + 21} = 6$$ $$\sqrt{36} = 6$$ $$6 = 6$$ Put $$x = -4$$ in equ (i) $$Put x = -4 \text{ in equ (i)}$$ $$\sqrt{5(-4)+21}=-4+3$$ $$\sqrt{-20 + 21} = -1$$ $$\sqrt{1} = -1$$ $$1 = -1 (False)$$ Hence x = -4 is an extraneous root. (True) # Thus Solution Set = $\{3\}$ # (ii) $\sqrt{2x-1} = x-2$ # **Solution:** $$\sqrt{2x-1} = x-2 --- equ(i)$$ # Taking square root on B.S $$\left(\sqrt{2x-1}\right)^2 = (x-2)^2$$ $$2x - 1 = (x)^2 - 2(x)(2) + (2)^2$$ $$2x - 1 = x^2 - 4x + 4$$ $$0 = x^2 - 4x - 2x + 4 + 1$$ # Chapter # 1 # Ex # 1.3 R.W $(x^2)(5) = 5x^2$ Multiply -1x -5x $5x^2$ Add -1x -5x -6x $$0 = x^2 - 6x + 5$$ $$x^2 - 6x + 5 = 0$$ $$x^2 - 1x - 5x + 5 = 0$$ $$x(x-1) - 5(x-1) = 0$$ $$(x-1)(x-5)=0$$ $$x - 1 = 0$$ or $x - 5 = 0$ $$x = 1$$ or $x = 5$ # Verification: Put $$x = 1$$ in equ (i) $$\sqrt{2(1) - 1} = 1 - 2$$
$$\sqrt{2-1} = -1$$ $$\sqrt{1} = -1$$ $$1 = -1 (Flase)$$ Put x = 5 in equ (i) $$\sqrt{2(5)-1}=5-2$$ $$\sqrt{10-1} = 3$$ $$\sqrt{9} = 3$$ $$3 = 3$$ (True) Hence x = 1 is an extraneous root. **Thus Solution Set** = $\{5\}$ (iii) $$\sqrt{4x+5} = 2x-5$$ # Solution: $$\sqrt{4x+5} = 2x-5 - - - \text{equ (i)}$$ # Taking square root on B.S $$\left(\sqrt{4x+5}\right)^2 = (2x-5)^2$$ $$4x + 5 = (2x)^2 - 2(2x)(5) + (5)^2$$ $$4x + 5 = 4x^2 - 20x + 25$$ $$0 = 4x^2 - 20x - 4x + 25 - 5$$ $$0 = 4x^2 - 24x + 20$$ $$4x^2 - 24x + 20 = 0$$ $$4(x^2 - 6x + 5) = 0$$ # Divide B. S by 4, we get $$x^2 - 6x + 5 = 0$$ $$x^2 - 1x - 5x + 5 = 0$$ $$x(x-1) - 5(x-1) = 0$$ $$(x-1)(x-5)=0$$ $$x - 1 = 0$$ or $x - 5 = 0$ $$r = 1$$ or $r = 5$ $$x = 1$$ or $x = 5$ # **Verification:** Put $$x = 1$$ in equ (i) $$\sqrt{2(1)-1}=1-2$$ | R.W | | |-------------------|----------| | $(x^2)(5) = 5x^2$ | | | Add | Multiply | | -1x | -1x | | -5x | -5x | | -6x | $5x^2$ | | | | Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- #### Chapter # 1 # $\sqrt{2-1} = -1$ Ex # 1.3 $$\sqrt{1} = -1$$ $$1 = -1 (Flase)$$ Put $$x = 5$$ in equ (i) $$\sqrt{2(5) - 1} = 5 - 2$$ $$\sqrt{10-1}=3$$ $$\sqrt{9} = 3$$ $$3 = 3$$ (True) Hence x = 1 is an extraneous root. #### Thus Solution Set = $\{5\}$ (iv) $$\sqrt{29-4x} = 2x+3$$ #### **Solution:** $$\sqrt{29-4x} = 2x + 3 - -- \text{equ (i)}$$ #### Taking square root on B. S $$(\sqrt{29-4x})^2 = (2x+3)^2$$ $$29 - 4x = (2x)^2 + 2(2x)(3) + (3)^2$$ R.W $(x^2)(-5) = -5x^2$ +5x +4x Add Multiply -1x +5x $-5x^{2}$ $$29 - 4x = 4x^2 + 12x + 9$$ $$0 = 4x^2 + 12x + 4x + 9 - 29$$ $$0 = 4x^2 + 16x - 20$$ $$4x^2 + 16x - 20 = 0$$ $$4(x^2 + 4x - 5) = 0$$ $$x^2 + 4x - 5 = 0$$ $$x^2 - 1x + 5x - 5 = 0$$ $$x(x-1) + 5(x-1) = 0$$ $$(x-1)(x+5) = 0$$ $$x - 1 = 0$$ or $x + 5 = 0$ $$x = 1$$ or $x = -5$ #### Verification: Put x = 1 in equ (i) $$\sqrt{29-4(1)}=2(1)+3$$ $$\sqrt{29-4}=2+3$$ $$\sqrt{25} = 5$$ $$5 = 5$$ (True) Put x = -5 in equ (i) $$\sqrt{29-4(-5)}=2(-5)+3$$ $$\sqrt{29+20} = -10+3$$ $$\sqrt{49} = -7$$ $$7 = -7 (False)$$ Hence x = -5 is an extraneous root. #### Thus Solution Set = $\{1\}$ (v) $$\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13}$$ #### **Solution:** $$\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13} - --$$ equ (i) #### Taking square root on B. S $$(\sqrt{x+7} + \sqrt{x+2})^2 = (\sqrt{6x+13})^2$$ $$(\sqrt{x+7})^2 + (\sqrt{x+2})^2 + 2(\sqrt{x+7})(\sqrt{x+2}) = 6x + 13$$ $$x + 7 + x + 2 + 2\sqrt{(x+7)(x+2)} = 6x + 13$$ $$2x + 9 + 2\sqrt{x^2 + 2x + 7x + 14} = 6x + 13$$ $$2\sqrt{x^2 + 9x + 14} = 6x - 2x + 13 - 9$$ $$2\sqrt{x^2+9x+14} = 4x+4$$ $$2\sqrt{x^2 + 9x + 14} = 2(2x + 2)$$ $$\sqrt{x^2 + 9x + 14} = 2x + 2$$ #### Taking square root on B.S $$\left(\sqrt{x^2 + 9x + 14}\right)^2 = (2x + 2)^2$$ $$x^2 + 9x + 14 = (2x)^2 + 2(2x)(2) + (2)^2$$ $$x^2 + 9x + 14 = 4x^2 + 8x + 4$$ $$0 = 4x^2 - x^2 + 8x - 9x + 4 - 14$$ $$0 = 3x^2 - x - 10$$ $$3x^2 - x - 10 = 0$$ $$3x^2 + 5x - 6x - 10 = 0$$ $$x(3x+5) - 2(3x+5) = 0$$ $$(3x + 5)(x - 2) = 0$$ $$3x + 5 = 0$$ or $x - 2 = 0$ $$3x = -5 \quad or \quad x = 2$$ $$x = \frac{-5}{3} \quad or \quad x = 2$$ | R.W | | | |------------------------|-------------|--| | $(3x^2)(-10) = -30x^2$ | | | | Add | Multiply | | | +5 <i>x</i> | +5 <i>x</i> | | | -6x | -6x | | | -x | $-30x^{2}$ | | | | | | #### **Verification:** Put $$x = \frac{-5}{3}$$ in equ (i) $$\sqrt{\frac{-5}{3}} + 7 + \sqrt{\frac{-5}{3}} + 2 = \sqrt{6\left(\frac{-5}{3}\right) + 13}$$ $$\sqrt{\frac{-5+21}{3}} + \sqrt{\frac{-5+6}{3}} = \sqrt{2(-5)+13}$$ $$\sqrt{\frac{16}{3}} + \sqrt{\frac{1}{3}} = \sqrt{-10 + 13}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- #### Chapter # 1 $$\frac{4}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \sqrt{3}$$ $$\frac{4+1}{\sqrt{3}} = \sqrt{3}$$ $$\frac{5}{\sqrt{3}} = \sqrt{3}$$ (False) Put $x = 2$ in equ (i) $$\sqrt{2+7} + \sqrt{2+2} = \sqrt{6(2)+13}$$ $$\sqrt{9} + \sqrt{4} = \sqrt{12+13}$$ $$3 + 2 = \sqrt{25}$$ $$5 = 5$$ (True) Hence $x = \frac{-5}{3}$ is an extraneous root. #### Thus Solution Set = $\{2\}$ $$(\mathbf{vi}) \quad \sqrt{x} + \sqrt{3x+1} = \sqrt{5x+1}$$ #### **Solution:** $$\sqrt{x} + \sqrt{3x + 1} = \sqrt{5x + 1} - - - \text{equ (i)}$$ #### Taking square root on B. S $$(\sqrt{x} + \sqrt{3x + 1})^2 = (\sqrt{5x + 1})^2$$ $$(\sqrt{x})^2 + (\sqrt{3x + 1})^2 + 2(\sqrt{x})(\sqrt{3x + 1}) = 5x + 1$$ $$x + 3x + 1 + 2\sqrt{x(3x + 1)} = 5x + 1$$ $$4x + 1 + 2\sqrt{3x^2 + x} = 5x + 1$$ $$2\sqrt{3x^2 + x} = 5x - 4x + 1 - 1$$ $$2\sqrt{3x^2 + x} = x$$ #### Taking square root on B.S $$(2\sqrt{3x^2 + x})^2 = (x)^2$$ $$4(3x^2 + x) = x^2$$ $$12x^2 + 4x = x^2$$ $$12x^2 - x^2 + 4x = 0$$ $$11x^2 + 4x = 0$$ $$x(11x + 4) = 0$$ $$x = 0 \quad or \quad 11x + 4 = 0$$ $$x = 0 \quad or \quad x = \frac{-4}{11}$$ #### **Verification**: Put $$x = 0$$ in equ (i) $\sqrt{0} + \sqrt{3(0) + 1} = \sqrt{5(0) + 1}$ $0 + \sqrt{0 + 1} = \sqrt{0 + 1}$ $\sqrt{1} = \sqrt{1}$ $1 = 1$ (**True**) #### Ex # 1.3 Put $$x = \frac{-4}{11}$$ in equ (i) $$\sqrt{\frac{-4}{11}} + \sqrt{3(\frac{-4}{11})} + 1 = \sqrt{5(\frac{-4}{11})} + 1$$ $$\sqrt{\frac{-4}{11}} + \sqrt{\frac{-12}{11}} + 1 = \sqrt{\frac{-20}{11}} + 1$$ $$\sqrt{\frac{-4}{11}} + \sqrt{\frac{-12}{11}} = \sqrt{\frac{-20 + 11}{11}}$$ $$\sqrt{\frac{-4}{11}} + \sqrt{\frac{-1}{11}} = \sqrt{\frac{-9}{11}}$$ $$\sqrt{\frac{-4}{11}} + \sqrt{\frac{-1}{11}} = \sqrt{\frac{-9}{11}}$$ (False) Hence $x = \frac{-4}{11}$ is an extraneous root. Hence $x = \frac{-4}{11}$ is an extraneous root. #### Thus Solution Set $= \{0\}$ (vii) $$\sqrt{6x+40} - \sqrt{x+21} = \sqrt{x+5}$$ $$\sqrt{6x+40} - \sqrt{x+21} = \sqrt{x+5} - - - \text{equ (i)}$$ #### Taking square root on B. S $$(\sqrt{6x+40} - \sqrt{x+21})^2 = (\sqrt{x+5})^2$$ $$(\sqrt{6x+40})^2 + (\sqrt{x+21})^2 - 2\sqrt{6x+40}.\sqrt{x+21} = x+5$$ $$6x+40+x+21-2\sqrt{(6x+40)(x+21)} = x+5$$ $$7x+61-2\sqrt{6x^2+126x+40x+840} = x+5$$ $$-2\sqrt{6x^2+166x+840} = x-7x+5-61$$ $$-2\sqrt{6x^2+166x+840} = -6x-56$$ $$-2\sqrt{6x^2+166x+840} = -2(3x+28)$$ $$\sqrt{6x^2+166x+840} = 3x+28$$ #### Taking square root on B. S $$\left(\sqrt{6x^2 + 166x + 840}\right)^2 = (3x + 28)^2$$ $$6x^2 + 166x + 840 = (3x)^2 + 2(3x)(28) + (28)^2$$ $$6x^2 + 166x + 840 = 9x^2 + 168x + 784$$ $$0 = 9x^2 - 6x^2 + 168x - 166x + 784 - 840$$ $$0 = 3x^2 + 2x - 56$$ $$3x^2 + 2x - 56 = 0$$ $$3x^2 + 2x - 56 = 0$$ $$3x^2 - 12x + 14x - 56 = 0$$ $$3x(x - 4) + 14(x - 4) = 0$$ $$x + 28$$ $$3x +14x +2x +14x $-30x^{2}$ | (x - 4)(3x | + 14 | (x) = 0 | |------------|------|-------------| | x - 4 = 0 | or | 3x + 14 = 0 | Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- $$x = 4$$ or $3x = -14$ $x = 4$ or $x = \frac{-14}{3}$ By Checking, $x = \frac{-14}{2}$ is an extraneous root. Thus Solution Set $= \{4\}$ (viii) $$\sqrt{2x-3} + \sqrt{2x+4} = \sqrt{6x+13}$$ #### **Solution:** $$\sqrt{2x-3} + \sqrt{2x+4} = \sqrt{6x+13} - -\text{equ}(i)$$ #### Taking square root on B. S $$\left(\sqrt{2x-3} + \sqrt{2x+4}\right)^2 = \left(\sqrt{6x+13}\right)^2$$ $$\left(\sqrt{2x-3}\right)^2 + \left(\sqrt{2x+4}\right)^2 + 2\sqrt{2x-3} \cdot \sqrt{2x+4} = 6x+13$$ $$2x-3+2x+4+2\sqrt{(2x-3)(2x+4)} = 6x+13$$ $$4x + 1 + 2\sqrt{4x^2 + 8x - 6x - 12} = 6x + 13$$ $$2\sqrt{4x^2 + 2x - 12} = 6x - 4x + 13 - 1$$ $$2\sqrt{4x^2 + 2x - 12} = 2x + 12$$ $$2\sqrt{4x^2 + 2x - 12} = 2(x+6)$$ $$\sqrt{4x^2 + 2x - 12} = x + 6$$ #### Taking square root on B. S $$\left(\sqrt{4x^2 + 2x - 12}\right)^2 = (x+6)^2$$ $$4x^2 + 2x - 12 = (x)^2 + 2(x)(6) + (6)^2$$ $$4x^2 + 2x - 12 = x^2 + 12x + 36$$ $$4x^2 - x^2 + 2x - 12x - 12 - 36 = 0$$ $$3x^{2} - 10x - 48 = 0$$ $$3x^{2} - 10x - 48 = 0$$ $$3x^{2} + 8x - 18x - 48 = 0$$ $$x(3x + 8) - 6(x + 8) = 0$$ R.W $$(3x^{2})(-48) = -144x^{2}$$ Add Multiply $$+8x +8x$$ $$-18x -18x$$ $$-10x -144x^{2}$$ $$3x + 8 = 0$$ or $x - 6 = 0$ $3x = -8$ or $x = 6$ (3x + 8)(x - 6) = 0 $$x = \frac{-8}{3} \quad or \quad x = 6$$ By Checking , $x = \frac{-8}{3}$ is an extraneous root. #### Thus Solution Set $= \{6\}$ (ix) $$\sqrt{x^2 + 2x + 4} + \sqrt{x^2 + 2x + 9} = 5$$ #### **Solution:** $$\sqrt{x^2 + 2x + 4} + \sqrt{x^2 + 2x + 9} = 5$$ $$\sqrt{x^2 + 2x + 4} = 5 - \sqrt{x^2 + 2x + 9}$$ Taking square root on B.S #### Chapter # 1 $$\left(\sqrt{x^2 + 2x + 4}\right)^2 = \overline{\left(5 - \sqrt{x^2 + 2x + 9}\right)^2}$$ $$x^{2} + 2x + 4 = (5)^{2} + \left(\sqrt{x^{2} + 2x + 9}\right)^{2} - 2(5)\sqrt{x^{2} + 2x + 9}$$ $$x^{2} + 2x + 4 = 25 + x^{2} + 2x + 9 - 10\sqrt{x^{2} + 2x + 9}$$ $$4 = 25 + 9 - 10\sqrt{x^2 + 2x + 9}$$ $$4 = 34 - 10\sqrt{x^2 + 2x + 9}$$ $$4 - 34 = -10\sqrt{x^2 + 2x + 9}$$ $$-30 = -10\sqrt{x^2 + 2x + 9}$$ Divide B. S by -10, we get $$3 = \sqrt{x^2 + 2x + 9}$$ $$\sqrt{x^2 + 2x + 9} = 3$$ #### Again Take square root on B. S $$\left(\sqrt{x^2 + 2x + 9}\right)^2 = (3)^2$$ $$x^2 + 2x + 9 = 9$$ $$x^2 + 2x + 9 - 9 = 0$$ $$x^2 + 2x = 0$$ $$x(x+2)=0$$ $$x = 0 \quad or \quad x + 2 = 0$$ $$x = 0$$ or $x = -2$ #### Thus Solution Set = $\{0, -2\}$ #### (x) $\sqrt{2x^2+3x+5}+\sqrt{2x^2+3x+1}=2$ #### **Solution:** $$\sqrt{2x^2 + 3x + 5} + \sqrt{2x^2 + 3x + 1} = 2$$ $$\sqrt{2x^2 + 3x + 5} = 2 - \sqrt{2x^2 + 3x + 1}$$ #### Taking square root on B.S $$\left(\sqrt{2x^2 + 3x + 5}\right)^2 = \left(2 - \sqrt{2x^2 + 3x + 1}\right)^2$$ $$2x^2 + 3x + 5 = (2)^2 + \left(\sqrt{2x^2 + 3x + 1}\right)^2 - 2(2)\sqrt{2x^2 + 3x + 1}$$ $$2x^{2} + 3x + 5 = (2)^{2} + (\sqrt{2x^{2} + 3x + 1}) - 2(2)\sqrt{2x^{2} + 3x + 1}$$ $$2x^{2} + 3x + 5 = 4 + 2x^{2} + 3x + 1 - 4\sqrt{2x^{2} + 3x + 1}$$ $$5 = 4 + 1 - 4\sqrt{2x^2 + 3x + 1}$$ $$5 = 5 - 4\sqrt{2x^2 + 3x + 1}$$ $$5 - 5 = -4\sqrt{2x^2 + 3x + 1}$$ $$0 = -4\sqrt{2x^2 + 3x + 1}$$ Divide B. S by -4, we get $$0 = \sqrt{2x^2 + 3x + 1}$$ $$\sqrt{2x^2 + 3x + 1} = 0$$ #### Again Take square root on B. S $$\left(\sqrt{2x^2 + 3x + 1}\right)^2 = (0)^2$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 1.3 $$2x^{2} + 3x + 1 = 0$$ $$2x^{2} + 1x + 2x + 1 = 0$$
$$x(2x + 1) + 1(2x + 1) = 0$$ $$(x + 1)(2x + 1) = 0$$ $$x + 1 = 0 \text{ or } 2x + 1 = 0$$ $$x = -1 \text{ or } 2x = -1$$ $$x = -1 \text{ or } x = \frac{-1}{2}$$ | R.W | | | |--------------------|----------|--| | $(2x^2)(1) = 2x^2$ | | | | Add | Multiply | | | +1x | +1x | | | +2x | +2x | | | +3x | $2x^2$ | | Thus Solution Set = $\left\{-1, \frac{-1}{2}\right\}$ #### Q2: Find 2x + 5 if x satisfies $$\sqrt{40-9x}-2\sqrt{7-x}=\sqrt{-x}$$ #### **Solution:** $$\sqrt{40 - 9x} - 2\sqrt{7 - x} = \sqrt{-x}$$ $$\sqrt{40 - 9x} - \sqrt{-x} = 2\sqrt{7 - x}$$ #### Taking square root on B. S $$\left(\sqrt{40-9x}-\sqrt{-x}\right)^2 = \left(2\sqrt{7-x}\right)^2$$ $$(\sqrt{40-9x})^2 + (\sqrt{-x})^2 - 2\sqrt{40-9x} \cdot \sqrt{-x} = 4(7-x)$$ $$40 - 9x + (-x) - 2\sqrt{(40 - 9x)(-x)} = 28 - 4x$$ $$40 - 9x - x - 2\sqrt{-40x + 9x^2} = 28 - 4x$$ $$40 - 10x - 2\sqrt{9x^2 - 40x} = 28 - 4x$$ $$40 - 28 - 10x + 4x - 2\sqrt{9x^2 - 40x} = 0$$ $$12 - 6x = 2\sqrt{9x^2 - 40x}$$ $$2(6-3x) = 2\sqrt{9x^2 - 40x}$$ #### Divide B. S by 2, we get $$6 - 3x = \sqrt{9x^2 - 40x}$$ #### Again Take square root on B. S $$(6-3x)^2 = \left(\sqrt{9x^2 - 40x}\right)^2$$ $$(6)^2 + (3x)^2 - 2(6)(3x) = 9x^2 - 40x$$ $$36 + 9x^2 - 36x = 9x^2 - 40x$$ Now $$9x^2 - 9x^2 - 36x + 40x + 36 = 0$$ $$4x + 36 = 0$$ $$4x = -36$$ $$x = \frac{-36}{4}$$ $$x = -9$$ $$2x + 5 = 2(-9) + 5$$ $$2x + 5 = -18 + 5$$ $$2x + 5 = -13$$ **Thus** $$2x + 5 = -13$$ #### Chapter # 1 #### Review Ex # 1 #### Page # 15 R.W $(2y^2)(2) = 4y^2$ Multiply -1v $\frac{-4y}{4y^2}$ Add -1y -4v -5y Q2: Solve $$2w^4 - 5w^2 + 2 = 0$$ **Solution:** $$\overline{2w^4 - 5w^2 + 2} = 0$$ $$2(w^2)^2 - 5w^2 + 2 = 0$$ Let $$w^2 = v$$ $$2(v)^2 - 5v + 2 = 0$$ $$2v^2 - 5v + 2 = 0$$ $$2v^2 - 1v - 4v + 2 = 0$$ $$y(2y-1) - 2(2y-1) = 0$$ $$(2y-1)(y-2)=0$$ $$2y - 1 = 0$$ or $y - 2 = 0$ $$2y = 1$$ or $y = 2$ $$y = \frac{1}{2} \quad or \quad y = 2$$ But $$y = w^2$$ $$w^2 = \frac{1}{2} \quad or \quad w^2 = 2$$ $$\sqrt{w^2} = \pm \sqrt{\frac{1}{2}} \quad or \quad \sqrt{w^2} = \pm \sqrt{2}$$ $$w = \pm \frac{1}{\sqrt{2}}$$ or $w = \pm \sqrt{2}$ Solution Set = $\left\{\pm \frac{1}{\sqrt{2}}, \pm \sqrt{2}\right\}$ Q3: Find the constant a and b such that x = -1 and x = 1 are both solutions of the equation $ax^2 + bx + 2 = 0$. #### **Solution:** $$ax^2 + bx + 2 = 0$$ equ (i) Put $$x = -1$$ in equ (i) $$a(-1)^2 + b(-1) + 2 = 0$$ $$a(1) - b + 2 = 0$$ $$a - b + 2 = 0$$ equ (ii) Put x = 1 in equ (i) $$a(1)^2 + b(1) + 2 = 0$$ $$a(1) + b + 2 = 0$$ $$a + b + 2 = 0$$ equ (iii) Add equ (ii) and equ (iii) $$(a-b+2) + (a+b+2) = 0+0$$ $$a - b + 2 + a + b + 2 = 0$$ $$2a + 4 = 0$$ $$2a = -4$$ Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- #### Chapter # 1 #### Review Ex # 1 $$a = \frac{-4}{2}$$ $$a = -2$$ Put a = -2 in equ (iii) $$-2 + b + 2 = 0$$ $$b - 2 + 2 = 0$$ $$b = 0$$ #### **Answers:** $$a = -2$$ $$b = 0$$ # Q4: Find all values of x such that $x^2 + 5x + 6$ and $x^2 + 19x + 34$ are equal. #### **Solution:** As $$x^2 + 5x + 6$$ and $x^2 + 19x + 34$ are equal $$x^2 + 5x + 6 = x^2 + 19x + 34$$ $$5x + 6 = 19x + 34$$ $$5x - 19x = 34 - 6$$ $$-14x = 28$$ Divide B. S by $$-14$$ $$\frac{-14x}{-14} = \frac{28}{-14}$$ $$x = -2$$ #### **Challenge!** # Q5: Find the solutions to the equation $49x^2 - 316x + 132 = 0$ #### **Solution:** $$\frac{1}{49x^2 - 316x + 132} = 0$$ $$49x^2 - 294x - 22x + 132 = 0$$ $$49x(x-6) - 22(x-6) = 0$$ $$(x-6)(49x-22) = 0$$ $$x - 6 = 0$$ or $49x - 22 = 0$ $$x = 6$$ or $49x = 22$ $$x = 6 \quad or \quad x = \frac{22}{49}$$ | R.W | | | |--------------------------|-----------|--| | $(49x^2)(132) = 6468x^2$ | | | | Add | Multiply | | | -294x | -294x | | | -22x | -22x | | | -316x | $6468x^2$ | | | | | | | Solution Set = $\{1,5\}$ | | |--------------------------|--| | | | | | | | | | | | | | | | | | | Facebook: https://web.facebook.com/TehkalsDotCom/ Youtube: https://www.youtube.com/channel/UC991UmBM- Chapter # 1 # Tehkals.com Learn & Teach # **MATHEMATICS** Class 10th (KPK) | NAME: | | | |----------|----------|--| | F.NAME: | | | | CLASS: | SECTION: | | | ROLL #: | SUBJECT: | | | ADDRESS: | | | | | | | | SCHOOL: | | | Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Chapter # 2 #### **UNIT # 2** #### THEORY OF QUADRATIC EQUATIONS #### Ex # 2.1 #### **Quadratic Equation** $$ax^2 + bx + c = 0$$ #### **Quadratic Formula** $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ #### Discriminant of a Quadratic equation In quadratic formula, the expression $b^2 - 4ac$ is called Discriminant of quadratic equation. #### Nature of quadratic equation #### Case 1: If $b^2 - 4ac = 0$, then the roots are real, equal and rational. #### Case 2: If $b^2 - 4ac < 0$, then the roots are unequal and imaginary. #### Case 3: #### If $b^2 - 4ac > 0$, then: If $b^2 - 4ac$ is a perfect square, then roots are real, unequal and rational. If $b^2 - 4ac$ is not a perfect square, then roots are real, unequal and irrational. #### Example 1: #### Find discriminant of the following equation $$x^2 + 9x + 2 = 0$$ #### **Solution:** $$x^2 + 9x + 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = 9, c = 2 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(9)^2 - 4(1)(2)$ Discriminant = 81 - 8 Discriminant = 73 #### Example 2: Examine the nature of the roots of the following quadratic equations. (i) $$x^2 - 8x + 16 = 0$$ **Solution:** #### Ex # 2.1 $$x^2 - 8x + 16 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = -8, c = 16 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-8)^2 - 4(1)(16)$ Discriminant = 64 - 64 Discriminant = 0 Thus the roots are real, equal and rational (ii) $$x^2 + 9x + 2 = 0$$ #### Solution: $$x^2 + 9x + 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 9, c = 2$$ As we have $\frac{\text{Disc}}{\text{riminant}} = b^2 - 4ac$ Discriminant = $(9)^2 - 4(1)(2)$ Discriminant = 81 - 8 Discriminant = 73 > 0 Thus the roots are real, unequal and irrational #### (iii) $6x^2 - x - 15 = 0$ #### **Solution:** $$6x^2 - x - 15 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 6, b = -1, c = -15 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-1)^2 - 4(6)(-15)$ Discriminant = 1 + 360 Discriminant = 361 Discriminant = $19^2 > 0$ Thus the roots are real, unequal and rational Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.1 (iv) $4x^2 + x + 1 = 0$ **Solution:** $4x^2 + x + 1 = 0$ Compare it with $ax^2 + bx + c = 0$ Here a = 4, b = 1, c = 1 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(1)^2 - 4(4)(1)$ Discriminant = 1 - 16 Discriminant = -15 < 0 Thus the roots are unequal and imaginary #### Example 3: Determine the nature of roots of the following equations and verify the results by solving the by factorization. (i) $$x^2 - 6x + 9 = 0$$ #### Solution: $$x^2 - 6x + 9 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = -6, c = 9 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-6)^2 - 4(1)(9)$ Discriminant = 36 - 36 Discriminant = 0 Hence the roots are real, equal and rational #### **Verification by Solving equation** Using Factorizatin Method $$x^2 - 6x + 9 = 0$$ $$x^2 - 3x - 3x + 9 = 0$$ $$x(x-3) - 3(x-3) = 0$$ $$(x-3)(x-3)=0$$ $$x - 3 = 0$$ or $x - 3 = 0$ $$x = 3$$ or $x = 3$ Thus the roots are real, equal and rational Hence the result is verified (ii) $$x^2 + 5x + 6 = 0$$ #### **Solution:** $$x^2 + 5x + 6 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 5, c = 6$$ #### Chapter # 2 #### Ex # 2.1 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(5)^2 - 4(1)(6)$ Discriminant = 25 - 24 Discriminant = 1 Discriminant = $1^2 > 0$ Hence the roots are real, unequal and rational #### Verification by Solving equation Using Factorizatin Method $$x^2 + 5x + 6 = 0$$ $$x^2 + 2x + 3x + 6 = 0$$ $$x(x + 2) + 3(x + 2) = 0$$ $$(x+2)(x+3) = 0$$ $$x + 2 = 0$$ or $x + 3 = 0$ $$x = -2$$ or $x = -3$ Thus the roots are real, unequal and rational Hence the result is verified #### Example # 4: Without solving, determine the nature of the roots of the quadratic equation. $$3x^2 - 4x + 6 = 0$$ #### Solution: $$3x^2 - 4x + 6 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3, b = -4, c = 6$$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-4)^2 - 4(3)(6)$ Discriminant = 16 - 72 Discriminant = -56 < 0 #### Thus the roots are unequal and imaginary Example # 5: Without solving, determine the nature of the roots of the quadratic equation. $$2x^2 - 7x = -1$$ #### **Solution:** $$2x^2 - 7x = -1$$ $$2x^2 - 7x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2, b = -7, c = 1$$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-7)^2 - 4(2)(1)$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.1 Discriminant = 49 - 8 Discriminant = 41 Hence the roots are real, unequal and irrational #### **Example # 6 (i):** Determine the set of values of k for which the given quadratic equations have real roots. $$kx^2 + 4x + 1 = 0$$ #### **Solution:** $$kx^2 + 4x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = k, b = 4, c = 1$$ #### If roots are Real Discriminant = $b^2 - 4ac \ge 0$ $$b^2 - 4ac \ge 0$$ $$(4)^2 - 4(k)(1) \ge 0$$ $$16 - 4k \ge 0$$ $$16 \ge 4k$$ $$\frac{16}{4} \ge k$$ $$4 \ge k$$ $$k \le 4$$ ii) $$2x^2 + kx + 3 = 0$$ #### Solution: $$2x^2 + kx + 3 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2, b =
k, c = 3$$ #### If roots are Real Discriminant = $b^2 - 4ac \ge 0$ $$b^2 - 4ac \ge 0$$ $$(k)^2 - 4(2)(3) \ge 0$$ $$k^2 - 24 \ge 0$$ $$k^2 \ge 24$$ Taking square root on B. S $$\sqrt{k^2} \ge \pm \sqrt{24}$$ $$k \ge \pm \sqrt{4 \times 6}$$ $$k \geq \pm \sqrt{4} \cdot \sqrt{6}$$ $$k > +2\sqrt{6}$$ Therefore $$k > 2\sqrt{6}$$ $$k \le -2\sqrt{6}$$ #### Chapter # 2 #### Ex # 2.1 #### Page # 27 Q1: Find the discriminant of the following quadratic equations: (i) $$x^2 - 4x + 13 = 0$$ #### Solution: $$x^2 - 4x + 13 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1$$, $b = -4$, $c = 13$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-4)^2 - 4(1)(13)$ Discriminant = 16 - 52 Discriminant = -36 (ii) $$4x^2 - 5x + 1 = 0$$ #### Solution: $$4x^2 - 5x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 4, b = -5, c = 1$$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-5)^2 - 4(4)(1)$ Discriminant = 25 - 16 Discriminant = 9 #### (iii) $x^2 + x + 1 = 0$ #### **Solution:** $$x^2 + x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 1, c = 1$$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(1)^2 - 4(1)(1)$ Discriminant = 1 - 4 Discriminant = -3 Q2: Examine the nature of the roots of the following equations: (i) $$3x^2 - 5x + 1 = 0$$ #### **Solution:** $$3x^2 - 5x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3, b = -5, c = 1$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.1 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-5)^2 - 4(3)(1)$ Discriminant = 25 - 12 Discriminant = 13 > 0 Hence the roots are real, unequal and irrational (ii) $$6x^2 + x - 2 = 0$$ #### **Solution:** $$6x^2 + x - 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 6, b = 1, c = -2 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(1)^2 - 4(6)(-2)$ Discriminant = 1 + 48 Discriminant = 49 Discriminant = $7^2 > 0$ Hence the roots are real, unequal and rational #### (iii) $3x^2 + 2x + 1 = 0$ #### Solution: $$3x^2 + 2x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3$$, $b = 2$, $c = 1$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(2)^2 - 4(3)(1)$ Discriminant = 4 - 12 Discriminant = -8 < 0 Thus the roots are unequal and imaginary # Q3: For what value of *k* the roots of the following equations are equal. (i) $$x^2 + kx + 9 = 0$$ #### **Solution:** $$x^2 + kx + 9 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = k, c = 9 As roots are equal then Discriminant = $b^2 - 4ac = 0$ $$b^2 - 4ac = 0$$ $$(k)^2 - 4(1)(9) = 0$$ $$k^2 - 36 = 0$$ $$k^2 = 36$$ #### Chapter # 2 #### Ex # 2.1 Taking square root on B. S $$\sqrt{k^2} = \pm \sqrt{36}$$ $$k = \pm 6$$ (ii) $$12x^2 + kx + 3 = 0$$ #### **Solution:** $$12x^2 + kx + 3 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 12, b = k, c = 3$$ As roots are equal then Discriminant = $b^2 - 4ac = 0$ $$b^2 - 4ac = 0$$ $$(k)^2 - 4(12)(3) = 0$$ $$k^2 - 144 = 0$$ $$k^2 = 144$$ Taking square root on B. S $$\sqrt{k^2} = \pm \sqrt{144}$$ $$k = \pm 12$$ $$(iii) x^2 - 5x + k = 0$$ #### Solution: $$x^2 - 5x + k = 0$$ Compare it with $$ax^2 + bx + c = 0$$ Here $$a = 1, b = -5, c = k$$ As roots are equal then Discriminant = $$b^2 - 4ac = 0$$ $$b^2 - 4ac = 0$$ $$(-5)^2 - 4(1)(k) = 0$$ $$25 - 4k = 0$$ $$-4k = -25$$ $$4k = 25$$ $$k = \frac{25}{4}$$ # Q4: Determine whether the following quadratic equations and verify the results by solving them. (i) $$x^2 + 5x + 5 = 0$$ #### Solution: $$x^2 + 5x + 5 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 5, c = 5$$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $$(5)^2 - 4(1)(5)$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.1 Discriminant = 25 - 20 Discriminant = 5 > 0 As the roots are real Now find the roots #### Using Quadratic formula $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(5) \pm \sqrt{(5)^2 - 4(1)(5)}}{2(1)}$$ $$x = \frac{-5 \pm \sqrt{25 - 20}}{2}$$ $$x = \frac{-5 \pm \sqrt{5}}{2}$$ $$x = \frac{-5 + \sqrt{5}}{2} \quad or \quad x = \frac{-5 - \sqrt{5}}{2}$$ Thus the roots are $\frac{-5+\sqrt{5}}{2}$, $\frac{-5-\sqrt{5}}{2}$ $$4x^2 + 12x + 9 = 0$$ #### Solution: $$4x^2 + 12x + 9 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 4$$, $b = 12$, $c = 9$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(12)^2 - 4(4)(9)$ Discriminant = 144 - 144 Discriminant = 0 = 0 As the roots are real Now find the roots Using Factorizatin Method $$4x^2 + 12x + 9 = 0$$ $$4x^2 + 6x + 6x + 9 = 0$$ $$2x(2x + 3) + 3(2x + 3) = 0$$ $$(2x + 3)(2x + 3) = 0$$ $$2x + 3 = 0$$ or $2x + 3 = 0$ $$2x = -3$$ or $2x = -3$ $$x = \frac{-3}{2}$$ or $x = \frac{-3}{2}$ Solution Set $$=\left\{\frac{-3}{2}\right\}$$ #### Chapter # 2 #### Ex # 2.1 (iii) $6x^2 + x - 2 = 0$ #### **Solution:** $$6x^2 + x - 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 6, b = 1, c = -2 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(1)^2 - 4(6)(-2)$ Discriminant = 1 + 48 Discriminant = 49 Discriminant = $7^2 > 0$ Verification by Solving equation Using Factorizatin Method $$6x^2 + x - 2 = 0$$ $$6x^2 - 3x + 4x - 2 = 0$$ $$3x(2x-1) + 2(2x-1) = 0$$ $$(2x - 1)(3x + 2) = 0$$ $$2x - 1 = 0$$ or $3x + 2 = 0$ $$2x = 1 \quad or \quad 3x = -2$$ $$x = \frac{1}{2} \quad or \quad x = \frac{-2}{3}$$ **Solution Set** = $\left\{\frac{1}{2}, \frac{-2}{3}\right\}$ Q5: Determine the nature of roots of the following quadratic equations and verify the results by solving them. (i) $$3x^2 - 10x + 3 = 1$$ #### Solution: $$3x^2 - 10x + 3 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 3, b = -10, c = 3 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-10)^2 - 4(3)(3)$ Discriminant = 100 - 36 Discriminant = 64 Discriminant = $8^2 > 0$ Verification by Solving equation Using Factorizatin Method $$3x^2 - 10x + 3 = 0$$ $$3x^2 - 1x - 9x + 3 = 0$$ $$x(3x-1)-3(3x-1)=0$$ $$(3x-1)(x-3)=0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- $$3x - 1 = 0$$ or $x - 3 = 0$ $$3x = 1$$ or $x = 3$ $$x = \frac{1}{3}$$ or $x = 3$ Solution Set = $\left\{\frac{1}{3}, 3\right\}$ (ii) $$x^2 - 6x + 4 = 0$$ #### **Solution:** $$x^2 - 6x + 4 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -6, c = 4$$ As we have Discriminant = $b^2 - 4ac$ Discriminant = $(-6)^2 - 4(1)(4)$ Discriminant = 36 - 16 Discriminant = 20 > 0 Verification by Solving equation #### Using Quadratic formula $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)}$$ $$x = \frac{6 \pm \sqrt{36 - 16}}{2}$$ $$x = \frac{6 \pm \sqrt{20}}{2}$$ $$x = \frac{6 \pm \sqrt{4 \times 5}}{2}$$ $$x = \frac{6 \pm 2\sqrt{5}}{2}$$ $$x = \frac{2(3 \pm \sqrt{5})}{2}$$ $$x = 3 \pm \sqrt{5}$$ $$x = 3 + \sqrt{5}$$ or $x = 3 - \sqrt{5}$ Solution Set = $$\{3 + \sqrt{5}, 3 - \sqrt{5}\}$$ (iii) $$x^2 - 3 = 0$$ #### **Solution:** $$x^2 - 3 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 0, c = -3$$ #### Chapter # 2 #### Ex # 2.1 As we have Discriminant = $b^2 - 4ac$ Discriminant = $(0)^2 - 4(1)(-3)$ Discriminant = 0 + 12 Discriminant = 12 > 0 Verification by Solving equation $$x^2 - 3 = 0$$ $$x^2 = 3$$ Taking Square root on B. S $$\sqrt{x^2} = \pm \sqrt{3}$$ $$x = \pm \sqrt{3}$$ $$x = \sqrt{3}$$ or $x = -\sqrt{3}$ Solution Set = $$\{\sqrt{3}, -\sqrt{3}\}$$ #### For what value of k the roots of the following **Q6:** equations are: (a) real (b) imaginary (i) $$2x^2 + 3x + k = 0$$ #### Solution: $$2x^2 + 3x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2, b = 3, c = k$$ #### a) If roots are Real Discriminant = $b^2 - 4ac \ge 0$ $$b^2 - 4ac \ge 0$$ $$(3)^2 - 4(2)(k) \ge 0$$ $$9 - 8k > 0$$ $$9 \ge 8k$$ $$k \leq \frac{1}{8}$$ #### b) If roots are Imaginary Discriminant = $b^2 - 4ac < 0$ $$b^2 - 4ac < 0$$ $$(3)^2 - 4(2)(k) < 0$$ $$9 - 8k < 0$$ $$\frac{9}{6} < k$$ $$k > \frac{6}{3}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.1 #### (ii) $kx^2 + 2x + 1 = 0$ #### **Solution:** $$kx^2 + 2x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = k, b = 2, c = 1 #### a) If roots are Real Discriminant = $b^2 - 4ac \ge 0$ $$b^2 - 4ac \ge 0$$ $$(2)^2 - 4(k)(1) \ge 0$$ $$4-4k \ge 0$$ $$4 \ge 4k$$ $$\frac{4}{4} \ge k$$ $$1 \ge k$$ $$k \leq 1$$ #### b) If roots are Imaginary Discriminant = $b^2 - 4ac < 0$ $$b^2 - 4ac < 0$$ $$(3)^2(2)^2 - 4(k)(1) < 0$$ $$4 - 4k < 0$$ $$\frac{4}{4} < k$$ #### (iii) $x^2 + 5x + k = 0$ #### Solution: $$x^2 + 5x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = 5, c = k #### a) If roots are Real Discriminant = $b^2 - 4ac \ge 0$ $$b^2-4ac\geq 0$$ $$(5)^2 - 4(1)(k) \ge 0$$ $$25 - 4k \ge 0$$ $$25 \ge 4k$$ $$\frac{25}{4} \ge k$$ $$k \leq \frac{25}{4}$$ #### Chapter # 2 #### Ex # 2.1 #### b) If roots are Imaginary Discriminant = $b^2 - 4ac < 0$ $$b^2 - 4ac < 0$$ $$(5)^2 - 4(1)(k) < 0$$ $$25 - 4k < 0$$ $$\frac{25}{I} < I$$ $$k > \frac{25}{4}$$ #### Ex # 2.2 #### **Cube root of unity** Let *x* by the cube root of 1 $$x = (1)^{\frac{1}{3}}$$ #### Taking cube on B. S $$\left(x\right)^3 = \left| \left(1\right)^{\frac{1}{3}} \right|$$ $$x^3 = 1$$ $$x^3 - 1 = 0$$ $$(x)^3 - (1)^3 = 0$$ #### As $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ $$(x-1)(x^2+(x)(1)+(1)^2)=0$$ $$(x-1)(x^2+x+1)=0$$ $$x - 1 = 0$$ or $x^2 + x + 1 = 0$ $$x = 1$$ or $x^2 + x + 1 = 0$ Now $$x^2 + x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = 1, c = 1 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(1)}}{2(1)}$$ $$x = \frac{-1 \pm \sqrt{1-4}}{2}$$ $$x = \frac{-1 \pm
\sqrt{-3}}{2}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.2 $$x = \frac{-1 \pm \sqrt{-1 \times 3}}{2}$$ $$x = \frac{-1 \pm \sqrt{-1} \cdot \sqrt{3}}{2}$$ $$x = \frac{-1 \pm i\sqrt{3}}{2}$$ $$x = \frac{-1 + i\sqrt{3}}{2} \quad or \quad x = \frac{-1 - i\sqrt{3}}{2}$$ Thus the cube root of unity are 1, $\frac{-1 + i\sqrt{3}}{2}$ and $$\frac{-1-i\sqrt{3}}{2}$$ Here 1 is the real root and $$\frac{-1+i\sqrt{3}}{2}$$ and $\frac{-1-i\sqrt{3}}{2}$ are complex roots Let $$\omega = \frac{-1 + i\sqrt{3}}{2}$$ and $\omega^2 \frac{-1 - i\sqrt{3}}{2}$ $$x = \omega$$ or $x = \omega^2$ Solution Set = $$\{1, \omega, \omega^2\}$$ #### Properties of the cube root of unity The sum of cube roots of unity is zero $$1 + \omega + \omega^2 = 0$$ As $$\omega = \frac{-1 + i\sqrt{3}}{2}$$ and $\omega^2 \frac{-1 - i\sqrt{3}}{2}$ $$1 + \omega + \omega^2 = 1 + \frac{-1 + i\sqrt{3}}{2} + \frac{-1 - i\sqrt{3}}{2}$$ $$1 + \omega + \omega^2 = \frac{2 + \left(-1 + i\sqrt{3}\right) + \left(-1 - i\sqrt{3}\right)}{2}$$ $$1 + \omega + \omega^2 = \frac{2 - 1 + i\sqrt{3} - 1 - i\sqrt{3}}{2}$$ $$1 + \omega + \omega^2 = \frac{2 - 1 - 1 + i\sqrt{3} - i\sqrt{3}}{2}$$ $$1 + \omega + \omega^2 = \frac{1-1}{2}$$ $$1 + \omega + \omega^2 = \frac{0}{2}$$ $$1 + \omega + \omega^2 = 0$$ #### Other properties are: $$1 + \omega = -\omega^2$$ $$1 + \omega^2 = -\omega$$ $$\omega + \omega^2 = -1$$ ## Chapter # 2 #### Ex # 2.2 The Product of cube roots of unity is one $$1.\omega.\omega^2=1$$ As $$\omega = \frac{-1 + i\sqrt{3}}{2}$$ and $\omega^2 \frac{-1 - i\sqrt{3}}{2}$ 1. $$\omega$$. $\omega^2 = 1$. $\left(\frac{-1 + i\sqrt{3}}{2}\right) \left(\frac{-1 - i\sqrt{3}}{2}\right)$ 1. $$\omega$$. $\omega^2 = \frac{(-1 + i\sqrt{3})(-1 - i\sqrt{3})}{2 \times 2}$ 1. $$\omega$$. $\omega^2 = \frac{(-1)^2 - (i\sqrt{3})^2}{4}$ 1. $$\omega$$. $\omega^2 = \frac{1 - i^2(3)}{4}$ $$1.\,\omega.\,\omega^2 = \frac{1-3i^2}{4}$$ 1. $$\omega$$. $\omega^2 = \frac{1 - 3(-1)}{4}$ $$:: i^2 = 1$$ $$1.\,\omega.\,\omega^2=\frac{1+3}{4}$$ $$1.\,\omega.\,\omega^2=\frac{4}{4}$$ $$1.\omega.\omega^2=1$$ ## OR #### $\omega^3 = 1$ Reciprocal of the cube root of unity $$\omega = \frac{1}{\omega^2}$$ and $\omega^2 = \frac{1}{\omega}$ As $$\omega^3 = 1$$ We can write it as: $$\omega. \, \omega^2 = 1$$ Thus $\omega = \frac{1}{\omega^2}$ And also $$\omega^2 = \frac{1}{\omega}$$ #### Example # 7: Show that $$x^3 + y^3 = (x+y)(x-\omega y)(x-\omega^2 y)$$ **Solution:** $$x^3-y^3=(x+y)(x+\omega y)(x+\omega^2 y)$$ R. H. S $$(x + y)(x + \omega y)(x + \omega^2 y)$$ = $(x + y)(x^2 + \omega^2 xy + \omega xy + \omega^3 y^2)$ = $(x + y)[x^2 + xy(\omega^2 + \omega) + \omega^3 y^2]$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Chapter # 2 #### Ex # 2.2 As $$\omega^2 + \omega = -1$$ = $(x + y)[x^2 + xy(-1) + (1)^3y^2]$ = $(x + y)(x^2 - xy + y^2)$ = $x^3 + y^3 = L.H.S$ #### Example #8 Evaluate ω^{15} , ω^{24} , ω^{90} , ω^{101} , ω^{-2} , ω^{-13} **Solutions:** (i) $$\omega^{15} = \omega^{3 \times 5}$$ = $(\omega^3)^5$ = $(1)^5$ = 1 (ii) $$\omega^{24} = \omega^{3 \times 8}$$ $$= (\omega^3)^8$$ $$\mathbf{As} \ \boldsymbol{\omega^3} = \mathbf{1}$$ $$= (1)^8$$ $$= 1$$ (iii) $$\omega^{90} = \omega^{3 \times 30}$$ = $(\omega^3)^{30}$ As $$\omega^3 = 1$$ = $(1)^{30}$ = 1 $$\begin{array}{c|c} \textbf{(iv)} & \omega^{101} = \omega^{99}.\,\omega^2 \\ \omega^{3\times33}.\,\omega^2 \end{array}$$ $$\omega^{3\times33}.\omega^2$$ $(\omega^3)^{33}.\omega^2$ As $$\omega^3 = 1$$ = $$(1)^{33} \cdot \omega^2$$ = $1 \cdot \omega^2$ $$=\omega^2$$ $$\omega^{-2} = \frac{1}{\omega^2}$$ $$\omega^{-2} = \omega$$ $$\mathbf{As} \frac{1}{\omega^{2}} = \omega$$ $$\omega^{-2} = \omega$$ $$(\mathbf{vi}) \qquad \omega^{-13} = \frac{1}{\omega^{13}}$$ $$\omega^{-13} = \frac{1}{\omega^{12} \cdot \omega}$$ $$\omega^{-13} = \frac{1}{(\omega^{3})^{4} \cdot \omega}$$ $$\mathbf{As} \omega^{3} = \mathbf{1}$$ $$\omega^{-13} = \frac{1}{(1)^{5} \cdot \omega}$$ (vii) $$\omega^{-13} = \frac{1}{1.\omega}$$ $$\omega^{-13} = \frac{1}{\omega}$$ $$\operatorname{As} \frac{1}{\omega} = \omega^2$$ ## $\omega^{-13} = \omega^2$ Example #9 $$(-1+i\sqrt{3})^3+(-1+i\sqrt{3})^3=16$$ #### **Solution:** $$(-1 + i\sqrt{3})^3 + (-1 + i\sqrt{3})^3 = 16$$ $$\left(-1+i\sqrt{3}\right)^3+\left(-1+i\sqrt{3}\right)^3$$ $$\omega = \frac{-1 + i\sqrt{3}}{2}$$ and $\omega^2 = \frac{-1 - i\sqrt{3}}{2}$ $$2\omega = -1 + i\sqrt{3}$$ and $2\omega^2 = -1 - i\sqrt{3}$ So $$= (2\omega)^3 + (2\omega^2)^3$$ $$= (2^3\omega^3) + (2^3\omega^6)$$ $$= (8\omega^3) + (8\omega^{3\times2})$$ $$= (8\omega^3) + [8(\omega^3)^2]$$ As $$\omega^3 = 1$$ $$= 8(1) + 8(1)^2$$ $$= 8 + 8(1)$$ $$= 8 + 8$$ $$= 16 = R.H.S$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Ex # 2.2 #### Page # 31 Find the cube roots of the following numbers. Q1: #### -1(i) #### **Solution:** -1 Let x by the cube root of -1 $$x = (-1)^{\frac{1}{3}}$$ #### Taking cube on B. S $$(x)^3 = \left[(-1)^{\frac{1}{3}} \right]^3$$ $$x^3 = -1$$ $$x^3 = -1$$ $$x^3 + 1 = 0$$ $$(x)^3 + (1)^3 = 0$$ As $$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$ $$(x + 1)(x^2 - (x)(1) + (1)^2) = 0$$ $$(x+1)(x^2-x+1)=0$$ $$x + 1 = 0$$ or $x^2 - x + 1 = 0$ $$x = -1$$ or $x^2 - x + 1 = 0$ #### Now $$x^2 - x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -1, c = 1$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(1)}}{2(1)}$$ $$x = \frac{1 \pm \sqrt{1 - 4}}{2}$$ $$x = \frac{1 \pm \sqrt{-3}}{2}$$ $$x = \frac{1 \pm \sqrt{-1 \times 3}}{2}$$ $$x = \frac{1 \pm \sqrt{-1}.\sqrt{3}}{2}$$ $$x = \frac{1 \pm i\sqrt{3}}{2}$$ #### Chapter # 2 $$x = \frac{1 + i\sqrt{3}}{2} \quad or \quad x = \frac{1 - i\sqrt{3}}{2}$$ $$x = -\left(\frac{-1 - i\sqrt{3}}{2}\right) \quad or \quad x = -\left(\frac{-1 + i\sqrt{3}}{2}\right)$$ $$x = -(\omega^2) \quad or \quad x = -(\omega)$$ $$x = -(\omega^2)$$ or $x = -(\omega)$ $$x = -\omega^2$$ or $x = -\omega$ #### Solution Set = $\{-1, -\omega, -\omega^2\}$ #### (ii) #### **Solution:** Let *x* by the cube root of 8 $$x = (8)^{\frac{1}{3}}$$ #### Taking cube on B. S $$\left(x\right)^{3} = \left[\left(8\right)^{\frac{1}{3}}\right]^{3}$$ $$x^3 = 8$$ $$x^3 - 8 = 0$$ $$(x)^3 - (2)^3 = 0$$ As $$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$ $$(x-2)(x^2 + (x)(2) + (2)^2) = 0$$ $$(x-2)(x^2+2x+4)=0$$ $$(x-2)(x^2+2x+4) = 0$$ $x-2=0$ or $x^2+2x+4=0$ $$x = 2$$ or $x^2 + 2x + 4 = 0$ Now $$x^2 + 2x + 4 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = 2, c = 4$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(1)(4)}}{2(1)}$$ $$x = \frac{-2 \pm \sqrt{4 - 16}}{2}$$ $$x = \frac{-2 \pm \sqrt{-12}}{2}$$ $$x = \frac{2}{-2 \pm \sqrt{-1 \times 4 \times 3}}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- $$x = \frac{-2 \pm \sqrt{-1} \cdot \sqrt{4} \cdot \sqrt{3}}{2}$$ $$x = \frac{-2 \pm 2i\sqrt{3}}{2}$$ $$x = \frac{2(-1 \pm i\sqrt{3})}{2}$$ $$x = 2\left(\frac{-1 \pm i\sqrt{3}}{2}\right)$$ $$x = 2\left(\frac{-1 + i\sqrt{3}}{2}\right) \quad or \quad x = 2\left(\frac{-1 - i\sqrt{3}}{2}\right)$$ $$x = 2(\omega) \quad or \quad x = 2(\omega^{2})$$ $$x = 2\omega \quad or \quad x = 2\omega^{2}$$ #### Solution Set = $\{2, 2\omega, 2\omega^2\}$ #### -27(iii) #### **Solution:** -27 Let x by the cube root of -27 $$x = (-27)^{\frac{1}{3}}$$ #### Taking cube on B. S $$(x)^3 = \left[(-27)^{\frac{1}{3}} \right]^3$$ $$x^3 = -27$$ $$x^3 + 27 = 0$$ $$(x)^3 + (3)^3 = 0$$ As $$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$ $$(x+3)(x^2 - (x)(3) + (3)^2) = 0$$ $$(x+3)(x^2 - 3x + 9) = 0$$ $$x + 3 = 0$$ or $x^2 - 3x + 9 = 0$ $$x = -3$$ or $x^2 - 3x + 9 = 0$ Now $$x^2 - 3x + 9 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = -3, c = 9 As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Put the values $$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(9)}}{2(1)}$$ #### Chapter # 2 #### Ex # 2.2 $$x = \frac{3 \pm \sqrt{9 - 36}}{2}$$ $$x = \frac{3 \pm \sqrt{-27}}{2}$$ $$x = \frac{3 \pm \sqrt{-1 \times 9 \times 3}}{2}$$ $$x = \frac{3 \pm \sqrt{-1} \cdot \sqrt{9} \cdot \sqrt{3}}{2}$$ $$x = \frac{3 \pm 3i\sqrt{3}}{2}$$ $$x = \frac{3\left(1 \pm i\sqrt{3}\right)}{2}$$ $$x = 3\left(\frac{1 \pm i\sqrt{3}}{2}\right)$$ $$x = 3\left(\frac{1 + i\sqrt{3}}{2}\right) \quad or \quad x = 3\left(\frac{1 - i\sqrt{3}}{2}\right)$$ $$x = -3\left(\frac{-1 - i\sqrt{3}}{2}\right) \quad or \quad x = -3\left(\frac{-1 + i\sqrt{3}}{2}\right)$$ $$x = -3(\omega^2) \quad or \quad x = -3\omega$$ $$x = -3\omega^2 \quad or \quad x = -3\omega$$ Solution Set = $\{-3, -3\omega, -3\omega^2\}$ #### Q2: **Evaluate:** (i) $$\omega^{12} + \omega^{58} + \omega^{95}$$ $$\frac{\text{solution:}}{\omega^{12} + \omega^{58} + \omega^{95}} \\ = \omega^{12} + \omega^{57} \cdot \omega^{1} + \omega^{93} \cdot \omega^{2} \\ = \omega^{3 \times 4} + \omega^{3 \times 19} \cdot \omega + \omega^{3 \times 31} \cdot \omega^{2} \\ = (\omega^{3})^{4} + (\omega^{3})^{19} \cdot \omega + (\omega^{3})^{31} \cdot \omega^{2} \\ \text{As } \omega^{3} = 1 \\ = (1)^{4} + (1)^{19} \cdot \omega + (1)^{31} \cdot \omega^{2} \\ = 1 + 1 \cdot \omega + 1 \cdot \omega^{2} \\ = 1 + \omega + \omega^{2}$$ = 0 $\therefore \mathbf{1} + \boldsymbol{\omega} + \boldsymbol{\omega}^2 = \mathbf{0}$ (ii) $$\left(1+\omega-\omega^2\right)^7$$ #### **Solution:** $$= (1 + \omega - \omega^{2})^{7}$$ $$= (-\omega^{2} - \omega^{2})^{7}$$ $$= (-2\omega^{2})^{7}$$ $$= (-2)^{7} (\omega^{2})^{7}$$ $$= -128\omega^{14}$$ $$= -128. \omega^{12}. \omega^{2}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.2 = $$-128.\omega^{3\times4}.\omega^2$$ = $-128(\omega^3)^4.\omega^2$ **As** ω^3 = **1** = $-128(1)^4.\omega^2$ = $-128(1).\omega^2$ = $-128\omega^2$ (iii) $$\left(1+3\omega-\omega^2\right)\left(1+\omega-2\omega^2\right)$$ #### **Solution:** $$(1 + 3\omega - \omega^2)(1 + \omega - 2\omega^2)$$ = $(1 + \omega + 2\omega - \omega^2)(1 + \omega - 2\omega^2)$ As $$1 + \omega = -\omega^2$$ $$=(-\omega^2+2\omega-\omega^2)(-\omega^2-2\omega^2)$$ $$=(2\omega-\omega^2-\omega^2)(-3\omega^2)$$ $$= (2\omega - 2\omega^2)(-3\omega^2)$$ $$= -6\omega^3 + 6\omega^4$$ $$=-6\omega^3+6\omega^3\omega$$ As $$\omega^3 = 1$$ $$=-6(1)+6(1)\omega$$ $$= -6 + 6\omega$$ $$= -6(1 - \omega)$$ #### O3: Prove that: (i) $$(1+2\omega)(1+2\omega^2)(1-\omega-\omega^2)=6$$ #### **Solution:** $$(1 + 2\omega)(1 + 2\omega^2)(1 - \omega - \omega^2) = 6$$ #### L. H. S: $$(1 + 2\omega)(1 + 2\omega^2)(1 - \omega - \omega^2)$$ = $(1 + 2\omega^2 + 2\omega + 4\omega^3)[1 - (\omega + \omega^2)]$ = $[1 + 2(\omega^2 + \omega) + 4\omega^3][1 - (\omega + \omega^2)]$ As $$\omega^2 + \omega = -1$$ $$= [1 + 2(-1) + 4(1)][1 - (-1)]$$ $$=(1-2+4)(1+1)$$ $$=(-1+4)(2)$$ $$=(3)(2)$$ $$= 6 = R. H. S$$ #### Hence $$(1 + 2\omega)(1 + 2\omega^2)(1 - \omega - \omega^2) = 6$$ (ii) $$(-1 + i\sqrt{3})^4 (-1 + i\sqrt{3})^5 = 512\omega^2$$ #### Solution: $$(-1 + i\sqrt{3})^4 (-1 + i\sqrt{3})^5 = 512\omega^2$$ #### Chapter # 2 $$(-1+i\sqrt{3})^4(-1+i\sqrt{3})^5$$ As $$\omega = \frac{-1 + i\sqrt{3}}{2}$$ and $\omega^2 = \frac{-1 - i\sqrt{3}}{2}$ $$2\omega = -1 + i\sqrt{3}$$ and $2\omega^2 = -1 - i\sqrt{3}$ So $$= (2\omega)^4 (2\omega^2)^5$$ $$=(2^4\omega^4)(2^5\omega^{10})$$ $$= 16 \times 32\omega^{4+10}$$ $$=512\omega^{14}$$ $$=512\omega^{12}.\omega^{2}$$ $$=512(\omega^3)^4.\omega^2$$ As $$\omega^3 = 1$$ $$= 512(1)^4 \cdot \omega^2$$ $$= 512\omega^2 = R.H.S$$ #### Q4: Show that: (i) $$x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$$ #### Solution: $$x^{3} - y^{3} = (x - y)(x - \omega y)(x - \omega^{2}y)$$ R. H. S $$(x-y)(x-\omega y)(x-\omega^2 y)$$ $$= (x - y)(x^2 - \omega^2 xy - \omega xy + \omega^3 y^2)$$ $$= (x - y)[x^2 - xy(\omega^2 + \omega) + \omega^3 y^2]$$ As $$\omega^2 + \omega = -1$$ $$= (x - y)[x^2 - xy(-1) + (1)^3y^2]$$ $$=(x-y)(x^2+xy+y^2)$$ $$= x^3 - y^3 = L. H. S$$ (ii) $$(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)=1$$ #### Solution: $$(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8) = 1$$ L. H. S $$(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)$$ $$=(-\omega^2)(-\omega)(1+\omega^8+\omega^4+\omega^{12})$$ As $$1 + \omega = -\omega^2$$ and $1 + \omega^2 = -\omega$ $$= (\omega^3)(1 + \omega^6.\omega^2 + \omega^3\omega + \omega^{12})$$ $$= (\omega^3)[1 + (\omega^3)^2 \cdot \omega^2 + \omega^3 \omega + (\omega^3)^4]$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## $\mathbf{Ex} # 2.2$ = $(1)(1 + (1)^2 \cdot \omega^2 + (1)\omega + (1)^4)$ = $1 + \omega^2 + \omega + 1$ As $1 + \omega^2 + \omega = 0$ = 0 + 1= 1 #### Ex # 2.2 #### Roots and co-efficients of a Quadratic equation Let α and β are the roots of quadratic equation $ax^2 + bx + c = 0$ Thus $$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$ And $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ #### Then sum of roots: $$\alpha + \beta = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$ $$\alpha + \beta = \frac{(-b + \sqrt{b^2 - 4ac}) + (-b - \sqrt{b^2 - 4ac})}{2a}$$ $$\alpha + \beta = \frac{-b + \sqrt{b^2 - 4ac} - b - \sqrt{b^2 - 4ac}}{2a}$$ $$\alpha + \beta = \frac{-b - b}{2a}$$ $$\alpha + \beta = \frac{-2b}{2a}$$ $$\alpha + \beta = \frac{-b}{a}$$ #### **And product of roots:** $$\alpha.\beta$$ $$= \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \cdot \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$$ $$\alpha.\beta = \frac{\left(-b + \sqrt{b^2 - 4ac}\right) \cdot \left(-b - \sqrt{b^2 - 4ac}\right)}{(2a)(2a)}$$ $$\alpha.\beta = \frac{\left(-b\right)^2 - \left(\sqrt{b^2 - 4ac}\right)^2}{4a^2}$$ $$\alpha.\beta = \frac{b^2 - \left(b^2 - 4ac\right)}{4a^2}$$ $$\alpha.\beta = \frac{b^2 - b^2 + 4ac}{4a^2}$$ $$\alpha.\beta = \frac{4ac}{4a^2}$$ $$\alpha.\beta = \frac{c}{a}$$ #### Chapter # 2 #### Ex # 2.3 Thus Sum of roots = $$\alpha + \beta = \frac{-b}{a}$$ Product of roots = $\alpha \cdot \beta = \frac{c}{a}$ #### Example # 10 Without solving, find the sum and products of the roots of the equations. (i) $$|2x^2-3x-4=0$$ #### Solution: $$2x^2 - 3x - 4 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2$$, $b = -3$, $c = -4$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{2} = \frac{3}{2}$$ #### And product of roots $$\alpha \cdot \beta = \frac{c}{a} = \frac{-4}{2} = -2$$ #### (ii) $3x^2 + 6x - 2 = 0$ #### Solution: $$3x^2 + 6x - 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3, b = 6, c = -2$$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-6}{3} = -2$$ #### And product of roots: $$\alpha \cdot \beta = \frac{c}{a} = \frac{-2}{3} = -\frac{2}{3}$$ #### **Example # 1**1 Find the value of k so that the sum of the roots of the equation $2x^2 + kx + 6 = 0$ is equal to three times the product of its roots. #### **Solution:** $$2x^2 + kx + 6 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2$$, $b = k$, $c = 6$ Let α and β be the roots of equation Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.3 #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-k}{2}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{6}{2} = 3$$ #### According to given condition Sum of roots = $3 \times Product$ of roots $$\frac{-k}{2} = 3 \times 3$$ $$\frac{-k}{2} = 9$$ Multiply B. S by 2 $$\frac{-k}{2} \times 2 = 9 \times 2$$ $$-k = 18$$ $$k = -18$$ #### Example # 12 Find the value of a if the sum of the square of the roots of $x^2 - 3ax + a^2 = 0$ is equal to 7. Solution: $$x^2 - 3ax + a^2 = 0$$ #### Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -3a, c = a^2$$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-3a)}{1} = 3a$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{a^2}{1} = a^2$$ #### According to given condition $$\alpha^2 + \beta^2 = 7$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ 50 $$(\alpha + \beta)^2 - 2\alpha\beta = 7$$ #### Put the values $$(3a)^2 - 2(a^2) = 7$$ $$9a^2 - 2a^2 = 7$$ $$7a^2 = 7$$ #### Divide B. S by 7 #### Chapter # 2 #### Ex # 2.3 $$\frac{7a^2}{7} = \frac{7}{7}$$ $$a^2 = 1$$ #### Taking square root on B. S $$\sqrt{a^2} = \pm \sqrt{1}$$ $$a = \pm 1$$ #### **Example # 13** Find the value of k if the roots of $x^2 - 7x + k = 0$ differ by unity. #### **Solution:** $$x^2 - 7x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -7, c = k$$ Let α and $\alpha + 1$ be the roots of equation #### Then sum of roots: $$\alpha + \alpha + 1 = \frac{-b}{a}$$ $$2\alpha + 1 = \frac{-(-7)}{1}$$ $$2\alpha + 1 = 7$$ $$2\alpha = 7 - 1$$ $$2\alpha = 6$$ $$\alpha = \frac{6}{2}$$ #### And product of roots: $$\alpha (\alpha + 1) = \frac{c}{a}$$ $$\alpha^2 + \alpha = \frac{k}{1}$$ $$\alpha^2 + \alpha = k$$ #### Put the value of α $$(3)^{2} + 3 = k$$ $$9 + 3 = k$$ $$12 = k$$ $$k = 12$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.3 #### Example # 14 If α , β are the roots of $9x^2 - 27x + k = 0$, find the k such that $2\alpha + 5\beta = 7$ #### **Solution:** $$9x^2 - 27x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 9, b = -27, c = k$$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-27)}{9} = \frac{27}{9} = 3$$ $$\alpha + \beta = 3 \dots equ(i)$$ #### **And product of roots:** $$\alpha . \beta = \frac{c}{a} = \frac{k}{9}$$ $$\alpha . \beta = \frac{k}{Q} equ (ii)$$ #### According to given condition $$2\alpha + 5\beta = 7$$equ (iii) Equ (i) $$\Rightarrow$$ $$\alpha + \beta = 3$$ $$\alpha = 3 - \beta$$ Equ (iv) Put the value of α in Equ (iii) $$2(3-\beta)+5\beta=7$$ $$6 - 2\beta + 5\beta = 7$$ $$6 + 3\beta = 7$$ $$3\beta = 7 - 6$$ $$3\beta = 1$$ #### Divide B. S by 3 $$\frac{3\beta}{3} = \frac{1}{3}$$ $$\beta = \frac{1}{3}$$ Now put $\beta = \frac{1}{3}$ in equ (iv) $$\alpha = 3 - \frac{1}{3}$$ $$\alpha = 3 - \frac{1}{3}$$ $$\alpha = \frac{9 - 1}{3}$$ $$\alpha = \frac{8}{2}$$ Put the value of α and β in Equ (ii) $$\left(\frac{8}{3}\right)\left(\frac{1}{3}\right) = k$$ $$8 = k$$ $$k = 8$$ #### Chapter # 2 #### Ex # 2.3 #### Example # 15 Find the value of m and n if both sum and products of roots of the equation $mx^2 - 5x + n = 0$ are equal to 10. $$mx^2 - 5x + n = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = m, b = -5, c = n$$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-5)}{m} = \frac{5}{m}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{n}{m}$$ #### **According to given conditions** #### Sum of roots equal to 10 $$\frac{5}{m} = 10$$ $$5 = 10m$$ $$\frac{5}{10} = \frac{10m}{100}$$ $$\frac{1}{2} = m$$ $$m=\frac{1}{\epsilon}$$ #### Product of roots equal to 10 $$\frac{n}{m} = 10$$ $$n = 10m$$ $$n = 10 \times \frac{1}{2}$$ $$n = 5$$ Thus $$m = \frac{1}{2}$$ and $n = 5$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Ex # 2.3 Page # 34 Q1: Without solving the equation, find the sum and products of the roots of the following quadratic equations. (i) $$4x^2 - 4x - 3 = 0$$ **Solution:** $$4x^2 - 4x - 3 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 4$$, $b = -4$, $c = -3$ Let α and β be the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-4)}{4} = \frac{4}{4} = 1$$ And product of roots: $$\alpha \cdot \beta = \frac{c}{a} = \frac{-3}{4} = -\frac{3}{4}$$ (ii) $$2x^2 + 5x + 6 = 0$$ Solution: $$2x^2 + 5x + 6 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2, b = 5, c = 6$$ Let α and β be the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-5}{2} = -\frac{5}{2}$$ **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{6}{2} = 3$$ (iii) $$3x^2 + 2x - 5 = 0$$ **Solution:** $$3x^2 + 2x - 5 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3$$, $b = 2$, $c = -5$ Let α and β be the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-2}{3} = -\frac{2}{3}$$ And product of roots: $$\alpha \cdot \beta = \frac{c}{a} = \frac{-5}{3} = -\frac{5}{3}$$ #### Chapter # 2 Ex # 2.3 Q2: Find the value of k if sum of the roots of $2x^2 + kx + 6 = 0$ is equal to the product of its roots **Solution:** $$2x^2 + kx + 6 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2, b = k, c = 6$$ Let α and β be the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-k}{2}$$ **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{6}{2} = 3$$ According to given condition **Sum of roots** = **Product of roots** $$\frac{-k}{2} = 3$$ Multiply B. S by 2 $$\frac{-k}{2} \times 2 = 3 \times 2$$ $$-k = 6$$ $$k = -6$$ Q3: Find the value of k if the sum of the square of the roots of $x^2 - 5kx + 6k^2 = 0$ is equal to 13. Solution: $$x^2 - 5kx + 6k^2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -5k, c = 6k^2$$ Let α and β be the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-5k)}{1} = 5k$$ And product of roots: $$\alpha \cdot \beta = \frac{c}{a} = \frac{6k^2}{1} = 6k^2$$ According to given condition $$\alpha^2 + \beta^2 = 13$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ So $$(\alpha + \beta)^2 - 2\alpha\beta = 13$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.3 #### Put the values $$(5k)^2 - 2(6k^2) = 13$$ $25k^2 - 12k^2 = 13$ $13k^2 = 13$ #### Divide B. S by 13 $$\frac{13k^2}{13} = \frac{13}{13}$$ $$k^2 = 1$$ #### Taking square root on B. S $$\sqrt{k^2} = \pm \sqrt{1}$$ $$k = \pm 1$$ #### O4: Find the value of k if the roots of $x^2 - 5x + k = 0$ differ by unity. #### **Solution:** $$x^2 - 5x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -5, c = k$$ Let α and $\alpha + 1$ be the roots of equation #### Then sum of roots: $$\alpha + \alpha + 1 = \frac{-b}{a}$$ $$2\alpha + 1 = \frac{-(-5)}{a}$$ $$2\alpha + 1 = 5$$ $$2\alpha + 1 = 5$$ $$2\alpha = 5 - 1$$ $$2\alpha = 4$$ $$\alpha = \frac{4}{2}$$ $$\alpha = 2$$ #### **And product of roots:** $$\alpha (\alpha + 1) = \frac{c}{a}$$ $$\alpha^2 + \alpha = \frac{k}{1}$$ $$\alpha^2 + \alpha = k$$ #### Put the value of α $$(2)^2 + 2 = k$$ $$4 + 2 = k$$ $$6 = k$$ $$k = 6$$ #### Chapter # 2 #### Ex # 2.3 #### Find the value of k if the roots of Q5: $x^2 - 9x + k + 2 = 0$ differ by three. #### **Solution:** $$x^2 - 9x + k + 2 = 0$$ Compare it with $$ax^2 + bx + c = 0$$ Here $$a = 1, b = -9, c = k + 2$$ Let α and α + 3 be the roots of equation #### Then sum of roots: $$\alpha + \alpha + 3 = \frac{-b}{a}$$ $$2\alpha + 3 = \frac{-(-9)}{1}$$ $$2\alpha + 3 = 9$$ $$2\alpha + 3 = 9$$ $$2\alpha = 9 - 3$$ $$2\alpha = 6$$ $$\alpha = \frac{6}{2}$$ $$\alpha = 3$$ #### And product of roots: $$\alpha (\alpha + 3) = \frac{c}{a}$$ $$\alpha^{2} + 3\alpha = \frac{k+2}{1}$$ $$\alpha^{2} + 3\alpha = k+2$$ #### Put the value of α $$(3)^2 + 3(3) = k + 2$$ $9 + 9 = k + 2$ $$9+9=k+2$$ $$18 = k + 2$$ $$18 - 2 = k$$ $$16 = k$$ $$k = 16$$ #### If α , β are the roots of $x^2 - 5x + k = 0$, find Q6: the k such that $3\alpha + 2\beta = 12$ #### **Solution:** $$x^2 - 5x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 1, b = -5, c = k Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-5)}{1} = \frac{5}{1}$$ $$\alpha + \beta = 5 \quad \dots \quad equ(i)$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.3 #### **And product of roots:** $$\alpha . \beta = \frac{c}{a} = \frac{k}{1} = k$$ $$\alpha . \beta = k \dots equ (ii)$$ #### According to given condition $$3\alpha + 2\beta = 12$$ equ (iii) Equ (i) \Rightarrow $\alpha + \beta = 5$ $\alpha = 5 - \beta$ Equ (iv) Put the value of $$\alpha$$ in Equ (iii) Fut the value of $$\alpha$$ in Equ (iii) $3(5 - \beta) + 2\beta = 12$ $15 - 3\beta + 2\beta = 12$ $15 - \beta = 12$ $-\beta = 12 - 15$ $-\beta = -3$ $\beta = 3$ Now put $$\beta = 3$$ in equ (iv) $$\alpha = 2$$ Put the value of α and β in Equ (ii) $(2)(3) = k$ $6 = k$ $\alpha = 5 - 3$ #### O7: Find the value of m and n if both sum and products of roots of the equation $$mx^2 - 3x - n = 0$$ are equal to $\frac{3}{5}$ #### **Solution:** k = 6 $$mx^2 - 3x - n = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $a = m, b = -3, c = -n$ Let α and β be the roots of equation #### **Then sum of roots:** $$\alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{m} = \frac{3}{m}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{-n}{m}$$ #### According to given conditions Sum of roots equal to $$\frac{3}{5}$$ #### Chapter # 2 #### Ex # 2.3 $$3 \times 5 = 3 \times m$$ $$15 = 3m$$ $$\frac{15}{3} = \frac{3m}{3}$$ $$5 = m$$ $$m = 5$$ # Product of roots equal to $\frac{3}{r}$ $$\frac{-n}{m} = \frac{3}{5}$$ $$\frac{-n}{5} = \frac{3}{5}$$ $$\frac{-n}{5} \times 5 = \frac{3}{5} \times 5$$ $$-n = 3$$ $$n = -3$$ #### Thus m = 5 and n = -3 #### Ex # 2.4 # Symmetric functions of roots of a Quadratic Let α , β be the roots of a quadratic equation, then the expressions of the form of $\alpha + \beta$, $\alpha\beta$, $\alpha^2 + \beta^2$ are called the functions of the roots of the quadratic equation. By symmetric function of the roots of an equation, we mean that the function remains unchanged in values when the roots are interchanged. #### Example: $$f(\alpha, \beta) = \alpha^2 + \beta^2$$ then $f(\beta, \alpha) = \beta^2 + \alpha^2$ Both are symmetric functions. #### Example # 16 (i) If α , β are the roots of $ax^2 + bx + c = 0$, find the values of the symmetric function $\alpha + \beta$ **Solution:** $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha+\beta=\frac{-b}{a}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.4 #### Example # 16 (ii) If α , β are the roots of $ax^2 + bx + c = 0$, find the values of the symmetric function $\alpha \beta$ Solution: $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### **Then Product of roots:** $$\alpha \cdot \beta = \frac{c}{a}$$ #### Example # 16 (iii) If α , β are the roots of $ax^2 + bx + c = 0$, find the values of the symmetric function $\alpha^2 + \beta^2$ #### **Solution:** $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ #### And product of roots: $$\alpha \cdot \beta = \frac{c}{a}$$ Now to find $\alpha^2 + \beta^2$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ $$\alpha^{2} + \beta^{2} = \left(\frac{-b}{a}\right)^{2} - 2\left(\frac{c}{a}\right)$$ $$\alpha^{2} + \beta^{2} = \frac{b^{2}}{a^{2}} - \frac{2c}{a}$$ $$\alpha^{2} + \beta^{2} = \frac{b^{2} - 2ac}{a^{2}}$$ #### Example # 16 (iv) If α , β are the roots of $ax^2 + bx + c = 0$, find the values of the symmetric function $\alpha^3 + \beta^3$ **Solution:** $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a}$$ #### Chapter # 2 #### Ex # 2.4 Now to find $\alpha^3 + \beta^3$ As $$\alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = (\alpha + \beta)^3$$ Then $$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$ $$\alpha^3 + \beta^3 = \left(\frac{-b}{a}\right)^3 - 3\left(\frac{c}{a}\right)\left(\frac{-b}{a}\right)$$ $$\alpha^3 + \beta^3 = \frac{-b^3}{a^3} + \frac{3bc}{a^2}$$ $$\alpha^3 + \beta^3 = \frac{-b^2 + 3abc}{a^3}$$ $$\alpha^3 + \beta^3 = \frac{3abc - b^2}{a^3}$$ #### Example # 16 (v) If α , β are the roots of $\alpha x^2 + bx + c = 0$, find the values of the symmetric function $\frac{1}{\alpha} + \frac{1}{R}$ #### Solution: $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ # And product of roots: $$\alpha \cdot \beta = \frac{c}{a}$$ $$\alpha \cdot \beta = \frac{c}{a}$$ Now to find $\frac{1}{\alpha} + \frac{1}{\beta}$ $$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta}$$ $$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$ $$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\frac{-b}{a}}{\frac{c}{a}}$$ $$\frac{1}{\alpha}
+ \frac{1}{\beta} = \frac{-b}{a} \div \frac{c}{a}$$ $$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{-b}{a} \times \frac{a}{c}$$ $$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{-b}{c}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.4 #### Example # 16 (vi) If α , β are the roots of $ax^2 + bx + c = 0$, find the values of the symmetric function $\frac{1}{\alpha^2} + \frac{1}{R^2}$ #### **Solution:** $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a}$$ Now to find $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha \beta)^2}$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(\frac{-b}{a}\right)^2 - 2\left(\frac{c}{a}\right)}{\left(\frac{c}{a}\right)^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c^2}{a^2}}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c^2}{a^2}}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\frac{b^2 - 2ac}{a^2}}{\frac{c^2}{a^2}}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{a^2} \div \frac{c^2}{a^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{a^2} \times \frac{a^2}{c^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{c^2}$$ ## Chapter # 2 #### Ex # 2.4 #### **Formation Of Quadratic Equation Whose Roots Are Given** Let α and β are the roots of equation #### Then sum of roots: $$S = \alpha + \beta = \frac{-b}{a}$$ $$S = -\frac{h}{c}$$ #### **And product of roots:** $$P = \alpha . \beta = \frac{c}{a}$$ $$P = \frac{c}{a}$$ $As ax^2 + bx + c = 0$ Divide all terms by a $$\frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a}$$ $$x^2 + \frac{bx}{a} + \frac{c}{a} = 0$$ Now we can write it as $$x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$$ As $$-\frac{b}{a} = S$$ and $\frac{c}{a} = P$ #### Then $$x^2 - Sx + P = 0$$ #### **Example # 17 (i)** Form a quadratic equation whose roots are $1 + \sqrt{5}$ and $1 - \sqrt{5}$ #### **Solution:** $$1+\sqrt{5}$$, $1-\sqrt{5}$ As $1 + \sqrt{5}$ and $1 - \sqrt{5}$ are the roots of required equation #### Then sum of roots: $$S = 1 + \sqrt{5} + 1 - \sqrt{5}$$ $$S = 1 + 1 + \sqrt{5} - \sqrt{5}$$ $$S = 2$$ #### **And product of roots:** $$P = \left(1 + \sqrt{5}\right)\left(1 - \sqrt{5}\right)$$ $$P = (1)^2 - (\sqrt{5})^2$$ $$P = 1 - 5$$ $$P = -4$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- # Chapter # 2 Ex # 2.4 As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - 2x + (-4) = 0$$ $$x^2 - 2x - 4 = 0$$ Which is the required equation Thus the given roots is the reverse process of solving an equation. #### Example # 18 Form the quadratic equation whose roots are (i) $$2a + 1, 2b + 1$$ Solution: $$2a + 1, 2b + 1$$ As 2a + 1 and 2b + 1 are the roots of required equation #### Then sum of roots: $$S = 2a + 1 + 2a + 1$$ $$S = 2a + 2b + 1 + 1$$ $$S = 2a + 2b + 2$$ #### And product of roots: $$P = (2a + 1)(2b + 1)$$ $$P = 4ab + 2a + 2b + 1$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^{2} - (2a + 2b + 2)x + (4ab + 2a + 2b + 1) = 0$$ Which is the required equation #### (ii) a^2 , b^2 #### **Solution:** $$a^2 \cdot b^2$$ As a^2 and $b^2 + 1$ are the roots of required equation #### Then sum of roots: $$S = a^2 + b^2$$ #### **And product of roots:** $$P = \left(a^2\right) \left(b^2\right)$$ $$P = a^2 b^2$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - (a^2 + b^2)x + a^2 b^2 = 0$$ Which is the required equation Ex # 2.4 (iii) $\frac{1}{2}$, $\frac{1}{4}$ **Solution:** $$\frac{1}{a}$$, $\frac{1}{b}$ As $\frac{1}{a}$ and $\frac{1}{b}$ are the roots of required equation #### Then sum of roots: $$S = \frac{1}{a} + \frac{1}{b}$$ $$S = \frac{b+a}{ab}$$ $$S = \frac{a+b}{ab}$$ #### **And product of roots:** $$P = \left(\frac{1}{a}\right) \left(\frac{1}{b}\right)$$ $$P = \frac{1}{ab}$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$\frac{x^2 - \left(\frac{a+b}{ab}\right)x + \frac{1}{ab} = 0$$ Multiply all terms by *ab* $$ab \times x^2 - ab \times \left(\frac{a+b}{ab}\right)x + ab \times \frac{1}{ab} = 0$$ $$abx^2 - (a+b)x + 1 = 0$$ Which is the required equation # (iv) $\left| \frac{2}{5}, \frac{3}{2} \right|$ #### **Solution:** $$\frac{2}{5}$$, $\frac{5}{2}$ As $\frac{2}{5}$ and $\frac{5}{2}$ are the roots of required equation #### Then sum of roots: $$S = \frac{2}{5} + \frac{5}{2}$$ $$S = \frac{3 + 25}{10}$$ $$S = \frac{29}{10}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.4 #### **And product of roots:** $$P = \left(\frac{2}{5}\right) \left(\frac{5}{2}\right)$$ $$P = \frac{10}{10}$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - \frac{29}{10}x + 1 = 0$$ Multiply all terms by 10 $$10 \times x^2 - 10 \times \frac{29}{10}x + 10 \times 1 = 0$$ $$10x^2 - 29x + 10 = 0$$ Which is the required equation # Ex # 2.4 #### Page # 39 # Q1: If α , β are the roots of $ax^2 + bx + c = 0$, find the values of $\alpha^3 \beta + \beta^3 \alpha$ Solution: $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a}$$ According to given condition $$\alpha^3\beta + \beta^3\alpha = \alpha\beta(\alpha^2 + \beta^2)$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ #### Sc $$\alpha^3\beta + \beta^3\alpha = \alpha\beta[(\alpha+\beta)^2 - 2\alpha\beta]$$ $$\alpha^{3}\beta + \beta^{3}\alpha = \frac{c}{a} \left[\left(\frac{-b}{a} \right)^{2} - 2 \left(\frac{c}{a} \right) \right]$$ $$\alpha^3 \beta + \beta^3 \alpha = \frac{c}{a} \left[\frac{b^2}{a^2} - \frac{2c}{a} \right]$$ $$\alpha^3\beta + \beta^3\alpha = \frac{c}{a} \left[\frac{b^2 - 2ac}{a^2} \right]$$ $$\alpha^3\beta + \beta^3\alpha = \frac{c\ (b^2 - 2ac)}{a^3}$$ #### Chapter # 2 #### Ex # 2.4 Q1: If α , β are the roots of $ax^2 + bx + c = 0$, find #### (ii) the values of $(\alpha - \beta)^2$ #### **Solution:** $$ax^2 + bx + c = 0$$ As α and β are the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ #### And product of roots: $$\alpha . \beta = \frac{c}{a}$$ According to given condition $$(\alpha - \beta)^2 = ?$$ As $$4\alpha\beta = (\alpha + \beta)^2 - (\alpha - \beta)^2$$ Then $$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$ So $$(\alpha - \beta)^2 = \left(\frac{-b}{a}\right)^2 - 4\left(\frac{c}{a}\right)$$ $$(\alpha - \beta)^2 = \frac{b^2 - 4a}{a^2}$$ #### Find the quadratic equation whose root are: (i) $$1,\frac{1}{2}$$ **Q2:** #### Solution: As 1 and $\frac{1}{2}$ are the roots of required equation #### Then sum of roots: $$S = 1 + \frac{1}{2}$$ $$S = \frac{2+1}{2}$$ $$S = \frac{3}{2}$$ #### **And product of roots:** $$P = (1) \left(\frac{1}{2}\right)$$ $$P = \frac{1}{2}$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - \frac{3}{2}x + \frac{1}{2} = 0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Chapter # 2 Multiply all terms by 2 $$2 \times x^2 - 2 \times \frac{3}{2}x + 2 \times \frac{1}{2} = 2 \times 0$$ $$2x^2 - 3x + 1 = 0$$ Which is the required equation -3,4(ii) Solution: $$-3.4$$ As -3 and 4 are the roots of required equation Then sum of roots: $$S = -3 + 4$$ $$S = 1$$ **And product of roots:** $$P = (-3)(4)$$ $$P = -12$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - 1.x + (-12) = 0$$ $$x^2 - x - 12 = 0$$ Which is the required equation $3 + \sqrt{2}$, $3 - \sqrt{2}$ (iii) Solution: $$3+\sqrt{2}$$, $3-\sqrt{2}$ As $3 + \sqrt{2}$ and $3 - \sqrt{2}$ are the roots of required equation Then sum of roots: $$S = 3 + \sqrt{2} + 3 - \sqrt{2}$$ $$S = 3 + 3 + \sqrt{2} - \sqrt{2}$$ $$S = 6$$ **And product of roots:** $$P = \left(3 + \sqrt{2}\right)\left(3 - \sqrt{2}\right)$$ $$P = (3)^2 - \left(\sqrt{2}\right)^2$$ $$P = 9 - 2$$ $$P = 7$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - 6x + 7 = 0$$ Which is the required equation Ex # 2.4 a, -2a (iv) **Solution:** $$a, -2a$$ As a and -a are the roots of required equation Then sum of roots: $$S = a + (-2a)$$ $$S = a - 2a$$ $$S = -a$$ And product of roots: $$P = (a) (-2a)$$ $$P = -2a^2$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - (-a)x + (-2a^2) = 0$$ $$x^2 + ax - 2a^2 = 0$$ Which is the required equation Form a quadratic equation whose roots are Q3: square of the roots of the equation $$ax^2 + bx + c = 0; a \neq 0.$$ Solution: $$ax^2 + bx + c = 0$$ As α and β are the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ **And product of roots:** $$\alpha . \beta = \frac{c}{a}$$ As α^2 and β^2 are the roots of required equation Now $$S = \alpha^2 + \beta^2$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ So $$S = (\alpha + \beta)^2 - 2\alpha\beta$$ $$S = \left(\frac{-b}{a}\right)^2 - 2\left(\frac{c}{a}\right)$$ $$S = \frac{b^2}{a^2} - \frac{2c}{a}$$ $$S = \frac{b^2 - 2ac}{a^2}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.4 #### Now $$P = \alpha^{2} \beta^{2}$$ $$P = (\alpha \beta)^{2}$$ $$P = \left(\frac{c}{a}\right)^{2}$$ $$P = \frac{c^2}{a^2}$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - \left(\frac{b^2 - 2ac}{a^2}\right)x + \frac{c^2}{a^2} = 0$$ Multiply all terms by a^2 $$a^{2} \times x^{2} - a^{2} \times \left(\frac{b^{2} - 2ac}{a^{2}}\right)x + a^{2} \times \frac{c^{2}}{a^{2}} = 0$$ $$a^2x^2 - (b^2 - 2ac)x + c^2 = 0$$ This is the required equation #### Q4: (i) If α , β are the roots of $2x^2 + 3x + 1 = 0$, then find the values of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ #### Solution: $$2x^2 + 3x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 2, b = 3, c = 1 Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-3}{2}$$ #### **And product of roots:** $$\alpha . \beta = \frac{c}{a} = \frac{1}{2}$$ Now $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha \cdot \alpha + \beta \cdot \beta}{\beta \alpha}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ 50 $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$ ## Chapter # 2 #### Ex # 2.4 $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\left(\frac{-3}{2}\right)^2 - 2\left(\frac{1}{2}\right)}{\frac{1}{2}}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{9}{4} - 1}{\frac{1}{2}}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{9 - 4}{\frac{1}{2}}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{5}{4}}{\frac{1}{2}}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{5}{4} \div \frac{1}{2}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{5}{4} \times \frac{2}{1}$$ $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{10}{4}$$ Q4: If α, β are the roots of $2x^2 + 3x + 1 = 0$, then find the values of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ #### Solution: $$2x^2 + 3x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 2, b = 3, c = 1 Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-3}{2}$$ #### **And product of roots:** $$\alpha . \beta = \frac{c}{a} = \frac{1}{2}$$ Now $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ So $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- Ev # 2 4 $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(\frac{-3}{2}\right)^2 - 2\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)^2}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\frac{9}{4} - 1}{\frac{1}{4}}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\frac{5}{4}}{\frac{1}{4}}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{5}{4} \div \frac{1}{4}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{5}{4} \times \frac{4}{1}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 5$$ Q4: (iii) If α , β are the roots of $2x^2 + 3x + 1 = 0$, then find the values of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ Solution: $$2x^2 + 3x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 2, b = 3, c = 1 Let α and β be the roots of equation Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-3}{2}$$ And product of roots: $$\alpha . \beta = \frac{c}{a} = \frac{1}{2}$$ Now $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha \cdot \alpha^2 + \beta \cdot \beta^2}{\beta \alpha}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$$ As $$\alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = (\alpha + \beta)^3$$ Then $$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$ So $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$$ ## Chapter # 2 Fv # 2 4 $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\left(\frac{-3}{2}\right)^3 - 3\left(\frac{1}{2}\right)\left(\frac{-3}{2}\right)}{\frac{1}{2}}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\frac{-27}{8} - \left(\frac{-9}{4}\right)}{\frac{1}{2}}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\frac{-27}{8} + \frac{9}{4}}{\frac{1}{2}}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\frac{-27 + 18}{8}}{\frac{1}{2}}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\frac{-9}{8}}{\frac{1}{2}}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{-9}{8} \div \frac{1}{2}$$ $$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{-9}{8} \times \frac{2}{1}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{-9}{4}$$ $$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{9}{4}$$ If α , β are the roots of $3x^2 + 2x + 5 = 0$, α β find the equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ Solution: Q5: $$3x^2 + 2x + 5 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 3, b = 2, c = 5 Let α and β be the roots of equation Then sum of roots: $$\alpha+\beta=\frac{-b}{a}=\frac{-2}{3}$$ **And product of roots:** $$\alpha . \beta = \frac{c}{a} = \frac{5}{3}$$ As $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ are the roots of required equation **Now Sum of roots** $$S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Chapter # 2 #### Ex # 2.4 $$S = \frac{\alpha \cdot \alpha + \beta \cdot \beta}{\beta \alpha}$$ $$S = \frac{\alpha^2 + \beta^2}{\alpha \beta}$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $$S = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$ $$S = \frac{\left(\frac{-2}{3}\right)^2 - 2\left(\frac{5}{3}\right)}{\frac{5}{3}}$$ $$S = \frac{\frac{4}{9} - \frac{10}{3}}{\frac{5}{3}}$$ $$S = \frac{\frac{4}{9} - \frac{10}{3}}{\frac{5}{3}}$$ $$\frac{4-30}{9}$$ $$S = \frac{9}{\frac{5}{3}}$$ $$-26$$ $$S = \frac{\frac{-26}{9}}{\frac{5}{3}}$$ $$S = \frac{-26}{9} \div \frac{5}{3}$$ $$S = \frac{-26}{9} \times \frac{3}{5}$$ $$S = \frac{-26}{3} \times \frac{1}{5}$$ $$S = -\frac{26}{15}$$ #### **Now Product of roots** $$P = \left(\frac{\alpha}{\beta}\right) \left(\frac{\beta}{\alpha}\right)$$ $$P = 1$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - \left(-\frac{26}{15}\right)x + 1 = 0$$ $$x^2 + \frac{26}{15}x + 1 = 0$$ #### Multiply all terms by 15 $$15 \times x^2 + 15 \times \frac{26}{15}x + 15 \times 1 = 15 \times 0$$ $$15x^2 + 26x + 15 = 0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- **Q6**: If α , β are the roots of $x^2 - 4x + 2 = 0$, find the equation whose roots are $$\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$$ #### **Solution:** $$x^2 - 4x + 2 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -4, c = 2$$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-4)}{1} = 4$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{2}{1} = 2$$ As $$\alpha + \frac{1}{\alpha}$$ and $\beta + \frac{1}{\beta}$ are the roots of #### required equation #### Now Sum of roots $$S = \alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta}$$ $$S = \alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta}$$ $$S = \alpha + \beta + \frac{\beta + \alpha}{\alpha \beta}$$ $$S = \alpha + \beta + \frac{\alpha + \beta}{\alpha \beta}$$ $$S = 4 + \frac{4}{2}$$ $$S = 4 + 2$$ $$S = 6$$ #### Now Product of roots $$P = \left(\alpha + \frac{1}{\alpha}\right) \left(\beta + \frac{1}{\beta}\right)$$ $$P = \alpha \beta + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{1}{\alpha \beta}$$ $$P = \alpha \beta + \frac{1}{\alpha \beta} + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$ $$P = \alpha \beta + \frac{1}{\alpha \beta} + \frac{\alpha \cdot \alpha + \beta \cdot \beta}{\beta \alpha}$$ $$P = \alpha \beta + \frac{1}{\alpha \beta} + \frac{\alpha^2 + \beta^2}{\alpha \beta}$$ As $$\alpha^2 + \beta^2 + 2\alpha\beta = (\alpha + \beta)^2$$ Then $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ #### Chapter # 2 Ex # 2.4 $$(+\beta)^2 - 2\alpha\beta$$ $$P = \alpha \beta + \frac{1}{\alpha \beta} + \frac{(\alpha + \beta)^2 - 2\alpha \beta}{\alpha \beta}$$ $$P = 2 + \frac{1}{2} + \frac{(4)^2 - 2(2)}{2}$$ $$4 + 1$$ $$16 - 4$$ $$P = \frac{4+1}{2} + \frac{16-4}{2}$$ $$P = \frac{5}{2} + \frac{12}{2}$$ $$P = \frac{5 + 12}{2}$$ $$P = \frac{17}{2}$$ As required equation is: $$x^2 - Sx + P = 0$$ Now $$x^2 - 6.x + \frac{17}{2} = 0$$ #### Multiply all terms by 2 $$2 \times x^2 - 2 \times 6x + 2 \times \frac{17}{2} = 2 \times 0$$ $$2x^2 - 12x + 17 = 0$$ Ex # 2.5 #### **Synthetic Division** Synthetic division is the process of finding the quotient and remainder with less writing and fewer calculations. Synthetic division is the shortcut of long division method and allows one to calculate without writing variables. #### Note: Synthetic division can be used only when the divisor is a linear factor. Must write a zero for the coefficient of each missing term in descending order. Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.5 Use synthetic division to find the quotient Q(x) and remainder R when the polynomial $3x^3 - 2x^2 - 150$ is divided by x - 4 In this question Dividend = $$3x^3 - 2x^2 - 150$$ Divisor = $x - 4$ First find synthetic divisor So we compare x - a with the divisor x - 4 $$x - a = x - 4$$ $$-a = -4$$ $$a = 4$$ Thus 4 is the synthetic divisor Now we can write the dividend like: $$P(x) = 3x^3 - 2x^2 - 150$$ First write the polynomial in descending order. Write zero with coefficient if missing in order. $$P(x) = 3x^3 - 2x^2 + 0x - 150$$ Write the co-efficients of x from dividend polynomial in a row Write the synthetic divisor 4 on the left side. Bring the first number straight down Now multiply 4 with 3 of third row and write the result under 2nd number of 2nd row. Now add the numbers under 2nd column and write in 3rd row. Now multiply 4 with 10 of third row and write the result under 3rd number of 2nd row and so on.... #### Chapter # 2 Ex # 2.5 And also add the numbers under 3rd column and so on.... #### Example # 19 Use synthetic division to find the quotient Q(x) and remainder R when the polynomial $3x^3 - 2x^2 - 150$ is divided by x - 4 #### **Solution:** $$3x^{3} - 2x^{2} - 150$$ Let P(x) = $3x^{3} - 2x^{2} + 0x - 150$ Now $$-a = x - 4$$ $$-a = -4$$ $$a = 4$$ 4 3 -2 0 -150 $$12 \quad 40 \quad 160$$ 3 10 40 10 Thus $$Q(x) = 3x^2 + 10x + 40$$ And $R = 10$ #### Example # 20 Use synthetic division to find the values of ${\boldsymbol k}$ if 2 is a zero of the polynomial $$2x^4 + x^3 + kx^2 - 8$$ #### **Solution:** $$2x^{4} + x^{3} + kx^{2} - 8$$ Let $P(x) = 2x^{4} + x^{3} + kx^{2} + 0x - 8$ As -2 is a zero of $P(x)$ So $P(2) = 0$ $$2 \begin{vmatrix} 2 & 1 & k & 0 & -8 \\ 4 & 10 & 2k + 20 & 4k + 40 \\ 2 & 5 & k + 10 & 2k + 20 & 4k + 32 \end{vmatrix}$$ Here Remainder = 4k + 32 As Remainder = 0 $$4k + 32 = 0$$ $$4k = -32$$ $$\frac{4k}{4} = \frac{-32}{4}$$ $$k = -8$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.5 #### Example # 21 Use synthetic division to find the values of mamd n if x - 1 and x + 2 are the factors of $x^3 - mx^2 + nx + 12$ #### **Solution:** As $$P(x) = x^3 - mx^2 + nx + 12$$ Now $$x - a = x - 1$$ $$-a = -1$$ $$a = 1$$ And $$x - a = x + 2$$ $$-a = 2$$ $$a = -2$$ $$\begin{array}{c|ccccc} & -2 & 2 + 2m \\ \hline & 1 & -1 - m & 3 + m + n \end{array}$$ Since x - 1 and x + 2 are the factors of P(x)So the remainders are equal to zero. $$13 - m + n = 0 \dots equ(i)$$ $$3 + m + n = 0$$equ (ii) #### Add equ(i) and equ(ii) $$\begin{array}{r} 13 - m + n = 0 \\ \hline 3 + m + n = 0 \\ \hline 16 + 2n = 0 \end{array}$$ As $$16 + 2n = 0$$ $$2n = -16$$ $$n = \frac{-16}{2}$$ $$n = -8$$ Put n = -8 equ(ii) $$3 + m + (-8) = 0$$ $$3 + m - 8 = 0$$ $$m + 3 - 8 = 0$$ $$m-5=0$$ $$m = 5$$ Thus $$m = 5$$ and $n = -8$ #### Chapter # 2 #### Ex # 2.5 #### Example # 22 If -1 and 2 are roots of the quartic equation $x^4 - 5x^2 + 4 = 0$, use synthetic division to find other roots. #### **Solution:** $$x^4 - 5x^2 + 4 = 0$$ Let $$P(x) = x^4 + 0x^3 - 5x^2 + 0x + 4$$ As -1 and 2 are the roots of P(x) Now Thus $Q(x) = x^2 + x - 2$ Now to find the other roots $$x^{2} - 1x + 2x - 2 = 0$$ $$x(x - 1) + 2(x - 1) = 0$$ $$(x - 1)(x + 2) = 0$$ | K.W | | | |---------------------|--|--| | $(x^2)(-2) = -2x^2$ | | | | Multiply | | | | -1x | | | | +2x | | | | $-2x^{2}$ | | | | | | | $$x - 1 = 0 \quad or \quad x + 2 = 0$$ $$x = 1$$ or $x = -2$ Thus the other roots are 1 and -2 # Ex # 2.5 #### Page # 42 Use synthetic division to find the quotient Q(x)01: and remainder R when the first polynomial is divided by the second binomial in each case: $$3x^3 + 2x^2 - x - 1; x + 3$$ **Solution:** $$3x^3 + 2x^2 - x - 1$$ Let $$P(x) = 3x^3 + 2x^2 - x - 1$$ Now (i) $$x - a = x + 3$$ $$-a = 3$$ $$a = -3$$ Thus $$Q(x) = 3x^2 - 7x + 20$$ And $$R = -61$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### $2x^3 - 7x^2 + 12x - 27$; x - 3(ii) **Solution:** $$2x^3 - 7x^2 + 12x - 27$$ Let $$P(x) = 2x^3 - 7x^2 + 12x - 27$$ Now $$x - a = x - 3$$ $$-a = -3$$ $$a = 3$$ And $$R = 0$$ (iii) $$2x^4 - 3x^2 + 5x - 7; x + 2$$ **Solution:** $$2x^4 - 3x^2 + 5x - 7$$ Let $$P(x) = 2x^4 + 0x^3 - 3x^2 + 5x - 7$$ Now $$x - a = x + 2$$ $$-a = 2$$ $$a = -2$$ Thus $$Q(x) = 2x^3 - 4x^2 + 5x - 5$$ And R = 3 #### Use synthetic division to find the value of k if -2 is **O2**: zero of the polynomials $x^3 + 4x^2 + kx + 8$ Solution: $x^3 + 4x^2 + kx + 8$ Let $$P(x) = x^3 + 4x^2 + kx + 8$$ As -2 is a zero of P(x) Here Remainder = -2k + 16 As Remainder = 0 $$-2k + 16 = 0$$ $$-2k = -16$$ Divide B. S by - 2 $$\frac{-2k}{-2} = \frac{-16}{-2}$$ $$k = 8$$ ## Chapter # 2 #### Use synthetic division to find the values of p amd Q3: q if x + 1 and x - 2 are the factors of $x^3 + px^2 + qx + 6.$ **Solution:** As $$P(x) = x^3 + px^2 + qx + 6$$ Now $$x - a = x + 1$$ $$-a = 1$$ $$a = -1$$ And $$x-a=x-2$$ $$-a = -2$$ $$a = 2$$ Since x + 1 and x - 2 are the factors of P(x)So the remainders are equal to zero. $$-q + p + 5 = 0 \dots equ(i)$$ $$q + p + 3 = 0 \dots equ(ii)$$ Add equ(i) and equ(ii) $$-q+p+5=0$$ $$q+p+3=0$$ $$2p+8=0$$ As $$2p + 8 = 0$$ $$2p = -8$$ $$p = \frac{-8}{2}$$ p = -4 Put $$p = -4 equ(ii)$$ $$q + (-4) + 3 = 0$$ $$q - 4 + 3 = 0$$ $$q - 1 = 0$$ $$q = 1$$ Thus $$p = -4$$ and $q = 1$ #### If x + 1 and x - 2 are the factors of the **O4**: polynomial $x^3 + ax^2 + bx + 2$, then using synthetic division, find the values of a and b. Solution: As $$P(x) = x^3 + ax^2 + bx + 2$$ Now $$x - a = x + 1$$ $$-a = 1$$ $$a = -1$$ And $$x - a = x - 2$$ $$-a = -2$$ $$a = 2$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- Since x + 1 and x - 2 are the factors of P(x) So the remainders are equal to zero. $$-b + a + 1 = 0 \dots equ(i)$$ $$b + a + 3 = 0$$equ (ii) #### Add equ(i) and equ(ii) As $$2a + 4 = 0$$ $$2a = -4$$ $$a = \frac{-4}{2}$$ $$a = -2$$ Put a = -2 equ(ii) $$b + (-2) + 3 = 0$$ $$b-2+3=0$$ $$b + 1 = 0$$ $$b = -1$$ Thus $$a = -2$$ and $b = -1$ ## O5: One root of the cubic equation $x^3 - 7x - 6 = 0$ is 3. Use synthetic division to find the other roots. #### Solution: $$x^3 - 7x - 6 = 0$$ Let $$P(x) = x^3 + 0x^2 - 7x - 6 = 0$$ As 3 is the root of P(x). So R.W $(x^2)(2) = 2x^2$ +1x +2x +3x Add | Multiply +1x +2x $2x^2$ Thus $$Q(x) = x^2 + 3x + 2$$ And $$R = 0$$ #### Now to find the other roots $$x^2 + 3x + 2 = 0$$ $$x^2 + 1x + 2x + 2 = 0$$ $$x(x+1) + 2(x+1) = 0$$ $$(x+1)(x+2) = 0$$ $$x + 1 = 0$$ or $x + 2 = 0$ $$x = -1$$ or $x = -2$ Thus the other roots are -1 and -2 ## Chapter # 2 #### Ex # 2.5 Q6: $\int 1 -1$ and 2 are roots of the quartic equation $x^4 - 5x^3 + 3x^2 + 7x - 2 = 0$, use synthetic division to find other roots. #### **Solution:** $$x^4 - 5x^3 + 3x^2 + 7x - 2 = 0$$ Let $$P(x) = x^4 - 5x^3 + 3x^2 + 7x - 2$$ As -1 and 2 are the roots of P(x) #### Now Thus $$Q(x) = x^2 - 4x + 1$$ #### Now to find the other roots $$x^2 - 4x + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ *He*re $$a = 1, b = -4, c = 1$$ As we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$$ Put the values $$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)}$$ $$x = \frac{4 \pm \sqrt{16 - 4}}{2}$$ $$x = \frac{4 \pm \sqrt{12}}{2}$$ $$x = \frac{4 \pm \sqrt{4 \times 3}}{2}$$ $$x = \frac{4 \pm 2\sqrt{3}}{2}$$ $$x = \frac{2(2 \pm \sqrt{3})}{2}$$ $$x = 2 \pm \sqrt{3}$$ $$x = 2 + \sqrt{3}$$ or $x = 2 - \sqrt{3}$ Thus the other roots are $2 + \sqrt{3}$ and $2 - \sqrt{3}$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Ex # 2.6 #### **Simultaneous Equations** More than one equation which are satisfied by the same values of the variables involved are called simultaneous equations. #### Note: A system of Linear equation consists of two or more linear equations in the same variables. #### Example # 23 #### Solve the system $$2x + y = 10$$ $$4x^2 + y^2 = 68$$ #### **Solution:** $$2x + y = 10$$ Equ (i) $$4x^2 + y^2 = 68 \dots \dots \text{Equ (ii)}$$ Equ (i) $$\Rightarrow$$ $$2x + y = 10$$ $$y = 10 - 2x$$ Equ (iii) Put the value of y in Equ (ii) $$4x^2 + (10 - 2x)^2 = 68$$ $$4x^2 + (10)^2 - 2(10)(2x) + (2x)^2 = 68$$ $$4x^2 + 100 - 40x + 4x^2 = 68$$ $$4x^2 + 4x^2 - 40x + 100 - 68 = 0$$ $$8x^2 - 40x + 32 = 0$$ $$8(x^2 - 5x + 4) = 0$$ #### Divided B. S by 8, we get $$x^2 - 5x + 4 = 0$$ $$x^{2} - 1x - 4x + 4 = 0$$ $$x(x - 1) - 4(x - 1) = 0$$ $$(x-1)(x-4)=0$$ $$x - 1 = 0 \quad or \quad x - 4 = 0$$ $$x = 1$$ or $x = 4$ | Now put $x =$ | 1 in e | qu (iii) | |---------------|--------|----------| $$y = 10 - 2(1)$$ $$y = 10 - 2$$ $$y = 8$$ Now put x = 4 in equ (iii) $$y = 10 - 2(4)$$ $$y = 10 - 8$$ $$y = 2$$ **Solution Set** = $\{(1, 8), (4, 2)\}$ ## Chapter # 2 #### Ex # 2.6 #### Example # 24 #### Solve the system $$x - y = 7$$ $$x^2 + 3xy + y^2 = -1$$ #### **Solution:** $$x - y = 7$$ Equ (i) $x^2 + 3xy + y^2 = -1$ Equ (ii) Equ (i) $$\Rightarrow$$ $$x - y = 7$$ $$x = 7 + y \dots \dots Equ$$ (iii) Put the value of *x* in Equ (ii) $$(7 + y)^2 + 3(7 + y)y + y^2 = -1$$ $$(7)^2 + 2(7)(y) + (y)^2 + 3y(7 - y) + y^2 = -1$$ R.W $(y^2)(10) = 10y^2$ Add +2y +5y +7y Multiply +2y +5y $10y^{2}$ $$49 + 14y + y^2 + 21y + 3y^2 + y^2 = -1$$ $$49 + 14y + y^2 + 21y + 4y^2 = -1$$ $$y^2 + 4y^2 + 14y + 21y + 49 + 1 = 0$$ $$5y^2 + 35y + 50 = 0$$ $$5(y^2 + 7y + 10) = 0$$ #### Divided B. S by 5, we get $$y^2 + 7y + 10 = 0$$ $$y^2 + 2y + 5y + 10 = 0$$ $$y(y + 2) + 5(y + 2) = 0$$ $$(y+2)(y+5) = 0$$ $$y + 2 = 0$$ or $y + 5 = 0$ $$y = -2$$ or $y = -5$ Now put y = -2 in equ (iii) $$x = 7 + (-2)$$ $$x = 7 - 2$$ $$x = 5$$ R.W $(x^2)(4) = 4x^2$ Add
-1x -4x -5x Multiply -1x -4x $4x^2$ Now put y = -5 in equ (iii) $$x = 7 + (-5)$$ $$x = 7 - 5$$ $$x = 2$$ **Solution Set** = $$\{(5, -2), (2, -5)\}$$ #### Example # 25 $$x^2 + y^2 = 4$$ $$2x^2 - y^2 = 8$$ #### **Solution:** $$x^2 + y^2 = 4$$ Equ (i) $x^2 = -y^2 + 45$ Equ (ii) Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.6 #### Add equ(i) and equ(ii) $$x^{2} + y^{2} = 4$$ $$2x^{2} - y^{2} = 8$$ $$3x^{2} = 12$$ Thus $$3x^2 = 12$$ $$x^2 = \frac{12}{3}$$ $$x^2 = 4$$ #### Taking Square root on B. S Taking Square root on $$\sqrt{x^2} = \pm \sqrt{4}$$ $x = \pm 2$ $x = 2$ or $x = -2$ Now put $x = 2$ in equ (i) $(2)^2 + y^2 = 4$ $4 + y^2 = 4$ $y^2 = 4 - 4$ $y^2 = 0$ Now put $x = -2$ in equ (Now put x = -2 in equ (i) $$(-2)^2 + y^2 = 4$$ $$4 + y^2 = 4$$ $$y^2 = 4 - 4$$ $y^2 = 0$ v = 0 **Solution Set** = $\{(2,0), (-2,0)\}$ ## Ex # 2.6 #### Page # 45 ## **Q1:** Solve the following system of equations. #### **Solution:** $$2x - y = 3$$ Equ (i) $x^2 + y^2 = 2$ Equ (ii) Equ (i) $$\Rightarrow$$ $2x - y = 3$ $$-y = 3 - 2x$$ $$-y = 3 - 23$$ $$y = -3 + 2x$$ $$y = 2x - 3 \dots \dots Equ (iii)$$ Put the value of y in Equ (ii) $$x^2 + (2x - 3)^2 = 2$$ ## Chapter # 2 #### Ex # 2.6 R.W $(5x^2)(7) = 35x^2$ Multiply -5x -7x $35x^{2}$ Add -5x -7x -12x $$x^{2} + (2x)^{2} - 2(2x)(3) + (3)^{2} = 2$$ $$x^{2} + 4x^{2} - 12x + 9 = 2$$ $$5x^2 - 12x + 9 - 2 = 0$$ $$5x^2 - 12x + 7 = 0$$ $$5x^2 - 5x - 7x + 7 = 0$$ $$5x - 5x - 7x + 7 = 0$$ $$5x(x-1) - 7(x-1) = 0$$ $$(x-1)(5x-7) = 0$$ $$x - 1 = 0$$ or $5x$ $$-7 = 0$$ $$x = 1$$ or $5x = 7$ $x = 1$ or $x = \frac{7}{5}$ Now put x = 1 in equ (iii) $$y = 2(1) - 3$$ $$y = 2 - 3$$ $$y = -1$$ Now put $x = \frac{7}{5}$ in equ (iii) $$y = 2\left(\frac{7}{5}\right) - 3$$ $$y = \frac{14}{5} - 3$$ $$y = \underbrace{\frac{14 - 15}{1}}$$ $$y = \frac{-1}{5}$$ Solution Set = $\{(1, -1), (\frac{7}{5}, \frac{-1}{5})\}$ (ii) $$x + 2y = 0$$ $x^2 + 4y^2 = 32$ #### **Solution:** $$x + 2y = 0$$ Equ (i) $x^2 + 4y^2 = 32$ Equ (ii) $$x + 2y = 0$$ $$x = -2y \dots \dots Equ (iii)$$ Put the value of *x* in Equ (ii) $$(-2y)^2 + 4y^2 = 32$$ $$4y^2 + 4y^2 = 32$$ $$8y^2 = 32$$ Divide B. S by 8 $$\frac{8y^2}{8} = \frac{32}{8}$$ $$y^2 = 4$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.6 #### Taking square root on B.S $$\sqrt{y^2} = \pm \sqrt{4}$$ $$y = \pm 2$$ $$y = 2$$ or $x = -2$ Now put y = 2 in equ (iii) $$x = -2(2)$$ $$x = -4$$ Now put x = -2 in equ (iii) $$x = -2(-2)$$ $$x = 4$$ **Solution Set** = $$\{(-4, 2), (4, -2)\}$$ (iii) $$2x - y = -8$$ $$x^2 + 4x = y$$ #### **Solution:** $$2x - y = -8 \dots \dots Equ (i)$$ $$x^2 + 4x = y \dots \dots \text{Equ (ii)}$$ #### Equ (i) \Rightarrow $$2x - y = -8$$ $$-y = -8 - 2x$$ $$-y = -(8+2x)$$ $$y = 8 + 2x$$ $$y = 2x + 8 \dots \text{Equ (iii)}$$ Put the value of y in Equ (ii) $$x^2 + 4x = 2x + 8$$ $$x^2 + 4x - 2x - 8 = 0$$ $$x(x+4) - 2(x+4) = 0$$ $$(x+4)(x-2)=0$$ $$x + 4 = 0$$ or $x - 2 = 0$ $$x = -4$$ or $x = 2$ Now put x = -4 in equ (iii) $$y = 2(-4) + 8$$ $$y = -8 + 8$$ $$y = 0$$ Now put x = 2 in equ (iii) $$y = 2(2) + 8$$ $$y = 4 + 8$$ $$y = 12$$ #### **Solution Set** = $\{(-4, 0), (2, 12)\}$ ## Chapter # 2 #### Ex # 2.6 $$2x + y = 4$$ $$x^2 - 2x + y^2 = 3$$ #### Solution: (iv) $$2x + y = 4 \dots \dots Equ (i)$$ $$x^2 - 2x + y^2 = 3$$ Equ (ii) Equ (i) $$\Rightarrow$$ $$2x + y = 4$$ $$y = 4 - 2x$$ Equ (iii) Put the value of y in Equ (ii) $$x^2 - 2x + (4 - 2x)^2 = 3$$ $$x^{2} - 2x + (4)^{2} - 2(4)(2x) + (2x)^{2} = 3$$ $$x^2 - 2x + 16 - 16x + 4x^2 = 3$$ $$x^2 + 4x^2 - 2x - 16x + 16 - 3 = 0$$ $$5x^2 - 18x + 13 = 0$$ $$5x^2 - 5x - 13x + 13 = 0$$ $$5x(x-1) - 13(x-1) = 0$$ $$(x - 1)(5x - 13) = 0$$ $$x - 1 = 0$$ or $5x - 13 = 0$ $$x = 1 \quad or \quad 5x = 13$$ $$x = 1 \quad or \quad 5x = 13$$ $$x = 1 \quad or \quad x = \frac{13}{5}$$ Now put x = 1 in equ (iii) $$y = 4 - 2(1)$$ $$y = 4 - 2$$ $$v = 2$$ | K.W | | |----------------------|-----------| | $(5x^2)(13) = 65x^2$ | | | Add | Multiply | | -5x | -5x | | -13x | -13x | | -18x | $65x^{2}$ | | | | Now put $x = \frac{13}{5}$ in equ (iii) $$y = 4 - 2\left(\frac{13}{5}\right)$$ $$y = 4 - \frac{26}{5}$$ $$y = \frac{20 - 26}{5}$$ $$y = \frac{-6}{5}$$ Solution Set = $$\left\{ (1,2), \left(\frac{13}{5}, \frac{-6}{5}\right) \right\}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.6 (v) $$\begin{vmatrix} 4x^2 + 5y^2 = 4 \\ 3x^2 + y^2 = 3 \end{vmatrix}$$ #### **Solution:** $$4x^2 + 5y^2 = 4$$ Equ (i) $3x^2 + y^2 = 3$ Equ (ii) Multiply equ(ii) with 5 $$15x^2 + 5y^2 = 15$$ Equ (iii) #### Subtract equ(i) from equ(iii) $$15x^{2} + 5y^{2} = 15$$ $$\pm 4x^{2} \pm 5y^{2} = \pm 4$$ $$11x^{2} = 11$$ Thus $$11x^2 = 11$$ $$x^2 = \frac{11}{11}$$ $$x^2 = 1$$ #### Taking Square root on B.S $$\sqrt{x^2} = \pm \sqrt{1}$$ $$x = \pm 1$$ $$x = 1$$ or $x = -1$ Now put x = 1 in equ (ii) $$3(1)^2 + y^2 = 3$$ $$3(1) + v^2 = 3$$ $$3 + y^2 = 3$$ $$y^2 = 3 - 3$$ $$v^2 = 0$$ $$y = 0$$ Now put x = -1 in equ (ii) $$3(-1)^2 + y^2 = 3$$ $$3(1) + y^2 = 3$$ $$3 + y^2 = 3$$ $$v^2 = 3 - 3$$ $$v^2 = 0$$ $$y = 0$$ #### **Solution Set** = $\{(1,0), (-1,0)\}$ (vi) $$5x^2 = y^2 + 9$$ $$x^2 = -y^2 + 45$$ #### **Solution:** $$5x^2 = y^2 + 9 \dots \dots$$ Equ (i) $x^2 = -y^2 + 45 \dots \dots$ Equ (ii) ## Chapter # 2 #### Ex # 2.6 #### Add equ(i) and equ(ii) $$5x^2 = v^2 + 9$$ $$x^2 = -y^2 + 45$$ $$6x^2 = 54$$ Thus $$6x^2 = 54$$ $$x^2 - 54$$ $$x^2 = 9$$ #### Taking Square root on B. S $$\sqrt{x^2} = \pm \sqrt{9}$$ $$x = \pm 3$$ $$x = 3$$ or $x = -3$ Now put x = 3 in equ (i) $$5(3)^2 = y^2 + 9$$ $$5(9) = y^2 + 9$$ $$45 = y^2 + 9$$ $$45 - 9 = y^2$$ $$36 = v^2$$ $$y^2 = 36$$ #### Taking Square root on B. S $$\sqrt{y^2} = \pm \sqrt{36}$$ $$y = \pm 6$$ $$x = 6$$ or $x = -6$ Now put $$x = -3$$ in equ (i) $$5(-3)^2 = y^2 + 9$$ $$5(9) = y^2 + 9$$ $$45 = y^2 + 9$$ $$45 - 9 = y^2$$ $$36 = y^2$$ $$y^2 = 36$$ ## Taking Square root on B. S $$\sqrt{y^2} = \pm \sqrt{36}$$ $$y = \pm 6$$ $$x = 6$$ or $x = -6$ **Solution Set** = $$\{(3,6), (3,-6), (-3,6), (-3,-6)\}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Chapter # 2 (vii) $\begin{vmatrix} Ex # 2.6 \\ 4x^2 + 3y^2 - 5 = 0 \end{vmatrix}$ $$2x^2 + 3y^2 - 4 = 0$$ **Solution:** $$4x^2 + 3y^2 - 5 = 0$$ Equ (i) $$2x^2 + 3y^2 - 4 = 0$$ Equ (ii) Subtract equ(ii) from equ(i) $$4x^{2} + 3y^{2} - 5 = 0$$ $$\pm 2x^{2} \pm 3y^{2} \mp 4 = 0$$ $$2x^{2} - 1 = 0$$ Thus $$2x^2 - 1 = 0$$ $$2x^2 = 1$$ $$x^2 = \frac{1}{2}$$ Taking Square root on B. S $$\sqrt{x^2} = \pm \sqrt{\frac{1}{2}}$$ $$x = \pm \frac{1}{\sqrt{2}}$$ $$x = \frac{1}{\sqrt{2}} \quad or \quad x = -\frac{1}{\sqrt{2}}$$ Now put $x = \frac{1}{\sqrt{2}}$ in equ (ii) $$2\left(\frac{1}{\sqrt{2}}\right)^2 + 3y^2 - 4 = 0$$ $$2\left(\frac{1}{2}\right) + 3y^2 - 4 = 0$$ $$1 + 3y^2 - 4 = 0$$ $$3y^2 + 1 - 4 = 0$$ $$3y^2 - 3 = 0$$ $$3y^2 = 3$$ $$y^2 = \frac{3}{3}$$ $$y^2 = 1$$ $$\sqrt{y^2} = \pm \sqrt{1}$$ $$y = \pm 1$$ $$x = 1$$ or $x = -1$ Now put $x = -\frac{1}{\sqrt{2}}$ in equ (ii) $$2\left(-\frac{1}{\sqrt{2}}\right)^2 + 3y^2 - 4 = 0$$ #### Ex # 2.6 $$2\left(\frac{1}{2}\right) + 3y^2 - 4 = 0$$ $$1 + 3y^2 - 4 = 0$$ $$3y^2 + 1 - 4 = 0$$ $$3y^2 - 3 = 0$$ $$3v^2 = 3$$ $$y^2 = \frac{3}{3}$$ $$v^2 = 1$$ $$\sqrt{y^2} = \pm \sqrt{1}$$ $$y = \pm 1$$ $$x = 1$$ or $x = -1$ #### **Solution Set** $$=\left\{\!\left(\frac{1}{\sqrt{2}},1\right),\!\left(\frac{1}{\sqrt{2}}\;,-1\right),\!\left(-\frac{1}{\sqrt{2}},1\right),\!\left(-\frac{1}{\sqrt{2}}\;,-1\right)\!\right\}$$ #### Challenge! Q2: Solve the system of equations (i) $$x + y = 9$$ $$x^2 + 3xy + 2y^2 = 3$$ **Solution:** $$x + y = 9$$ Equ (i) $$x^2 + 3xy + 2y^2 = 0$$ Equ (ii) Equ (i) $$\Rightarrow$$ $$x + y = 9$$ $$x = 9 - y$$ Equ (iii) Put the value of *x* in Equ (ii) $$(9-y)^2 + 3(9-y)y + 2y^2 = 0$$ $$(9)^2 - 2(9)(y) + (y)^2 + 3y(9 - y) + 2y^2 = 0$$ $$81 - 18y + y^2 + 27y - 3y^2 + 2y^2 = 0$$ $$81 - 18y + y^2 + 27y - y^2 = 0$$ $$v^2 - v^2 + 27v - 18v + 81 = 0$$ $$9y + 81 = 0$$ $$9y = -81$$ Divide B. S by 9 $$\frac{9y}{9} = \frac{-8}{9}$$ $$v = -9$$ Now put y = -9 in equ (iii) $$x = 9 - (-9)$$ $$x = 9 + 9$$ $$x = 18$$ **Solution Set** = $\{(18, -92)\}$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Ex # 2.6 (ii) $$y-x=4$$ $2x^2 + xy + y^2 = 8$ #### **Solution:** $$y - x = 4$$ Equ (i) $2x^2 + xy + y^2 = 8$ Equ (ii) Equ (i) $$\Rightarrow$$ $$y - x = 4$$ $$y = 4 + x \dots \dots Equ (iii)$$ Put the value of y in Equ (ii) $$2x^2 + x(4+x) + (4+x)^2 = 8$$ $$2x^2 + 4x + x^2 + (4)^2 + 2(4)(x) + (x)^2 = 8$$ $$2x^2 + 4x + x^2 + 16 + 8x + x^2 = 8$$ $$2x^2 + x^2 + x^2 + 4x + 8x + 16 - 8 = 0$$ R.W $(x^2)(2) = 2x^2$ +1x +2x +3x Add Multiply +1x +2x $2x^2$ $$4x^2 + 12x + 8 = 0$$ $$4(x^2 + 3x + 2) = 0$$ ## Divide B. S by 4, we get $$x^2 + 3x + 2 = 0$$ $$x^{2} + 1x + 2x + 2 = 0$$ $$x(x+1) + 2(x+1) = 0$$ $$(x+1)(x+2) = 0$$ $$x+1=0 \quad or \quad x+2=0$$ $$x = -1$$ or $x = -2$ Now put x = -1 in equ (iii) $$y = 4 + (-1)$$ $$y = 4 - 1$$ $$y = 3$$ Now put x = -2 in equ (iii) $$y = 4 + (-2)$$ $$y = 4 - 2$$ $$v = 2$$ **Solution Set** = $\{(-1,3), (-2,2)\}$ ## Ex # 2.7 #### Example # 26 Suppose a rectangular shed is being built that has an area of 120 square feet and is 7 feet longer than its wide. Determine its dimensions. #### **Solution:** Let Width =
$$x ft$$ So Length = $$(x + 7)ft$$ As Area = $$120 ft^2$$ ## Chapter # 2 Ex # 2.7 R.W Add -8x +15x +7x $(x^2)(-120) = -120x^2$ Multiply -8x $-120x^{2}$ +15x As we have $$Width \times Length = Area$$ $$x(x+7) = 120$$ $$x^2 + 7x = 120$$ $$x^2 + 7x - 120 = 0$$ $$x^2 - 8x + 15x - 120 = 0$$ $$x(x-8) + 15(x-8) = 0$$ $$(x-8)(x+15)=0$$ $$x - 8 = 0$$ or $x + 15 = 0$ $$x = 8$$ or $x = -15$ As distance will be positive Then we take x = 8 So Width = $$x ft = 8 m$$ And Length = $$(8 + 7)ft$$ $$= 15 ft$$ #### Example # 27 A man purchased a number of shares of stock for an amount of Rs. 6000. If he had paid Rs. 20 less per share, the number of shares that could have been purchased for the same amount of money would have increased by 10. How many shares did he buy? Solution: Let numbers of share = x And cost of per share = y As he purchase share for Rs. 6000 Then xy = 6000 ... Equ (i) Now if he paid Rs. 20 per share Then amount = y - 20 So he purchased 10 more shares Then number of shares = x + 10 According to new condition $$(x + 10)(y - 20) = 6000$$... Equ (ii) Equ (i) \Rightarrow $$xy = 6000$$ $$y = \frac{6000}{x}$$ Equ (iii) Put the value of y in Equ (ii) $$(x+10)\left(\frac{6000}{x}-20\right) = 6000$$ $$(x+10)\left(\frac{6000-20x}{x}\right) = 6000$$ $$(x + 10)(6000 - 20x) = 6000x$$ $$6000x - 20x^2 + 60000 - 200x = 6000x$$ $$-20x^2 + 6000x - 200x - 6000x + 60000 = 0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Chapter # 2 #### Ex # 2.7 $$-20x^2 - 200x + 60000 = 0$$ $$-200(x^2 + 10x - 3000) = 0$$ #### Divided B. S by -20, we get $$x^2 + 10x - 3000 = 0$$ $$x^2 - 50x + 60x - 270 = 0$$ $$x(x-50) + 60(x-50) = 0$$ $$(x - 50)(x + 60) = 0$$ $$x - 50 = 0$$ or $x + 60 = 0$ $$x = 50$$ or $x = -60$ As x = -60 is not possible Thus the number of Shares purchased = 15 ## Ex # 2.7 Page # 47 # Q1: Find the two consecutive positive integers whose product is 72. #### **Solution:** As there are two consecutive integers Let first integer = x And second integer = x + 1 ## According to given condition $$x(x+1) = 72$$ $$x^2 + x = 72$$ $$x^2 + x - 72 = 0$$ $$x^2 + 9x - 8x - 72 = 0$$ $$x(x+9) - 8(x+9) = 0$$ $$\lambda(\lambda + J) = 0$$ $$(x+9)(x-8)=0$$ $$x + 9 = 0$$ or $x - 8 = 0$ $$x = -9$$ or $x = 8$ #### As there are positive integers So first integer = x = 8 And second integer = x + 1 $$= 8 + 1$$ ## Q2: The sum of the squares of three consecutive integers is 50. Find the integers. #### **Solution:** As there are three consecutive integers #### Then First integer = x Second integer = x + 1 Third integer = x + 2 #### Ex # 2.7 ## According to given condition $$x^{2} + (x+1)^{2} + (x+2)^{2} = 50$$ $$x^{2} + (x)^{2} + 3(x)(1) + (1)^{2} + (x)^{2} + \dots$$ $$x^{2} + (x)^{2} + 2(x)(1) + (1)^{2} + (x)^{2} + 2(x)(2) + (2)^{2} = 50$$ $$x^2 + x^2 + 2x + 1 + x^2 + 4x + 4 = 50$$ $$x^2 + x^2 + x^2 + 2x + 4x + 1 + 4 - 50 = 0$$ $$3x^2 + 6x - 45 = 0$$ $$3(x^2 + 2x - 15) = 0$$ #### Divide B. S by 3, we get $$x^2 + 2x - 15 = 0$$ $$x^2 - 3x + 5x - 15 = 0$$ $$x(x-3) + 5(x-3) = 0$$ $$(x-3)(x+5) = 0$$ $$x - 3 = 0$$ or $x + 5 = 0$ $$x = 3$$ or $x = -5$ If $$x = 3$$ So first integer = x = 3 Second integer = x + 1 $$= 3 + 1$$ And third integer = x + 2 $$= 3 + 2$$ = 5 If $$x = -5$$ So first integer $$= x = -5$$ Second integer = $$x + 1$$ $$= -5 + 1$$ And third integer = $$x + 2$$ $$= -5 + 2$$ = -3 # Q3: The length of a hall is 5 meters more than its width. If the area of the hall is 36sq.m. Find the length and width of the hall. #### **Solution:** Let Width = x m So Length = (x + 5)m As Area = 36 m^2 As we have Width $$\times$$ Length = Area $$x(x+5) = 36$$ $$x^2 + 5x = 36$$ $$x^2 + 5x - 36 = 0$$ $$x^2 - 4x + 9x - 36 = 0$$ | R.W | | |-----------------------|------------| | $(x^2)(-36) = -36x^2$ | | | Add | Multiply | | -4x | -4x | | +9x | +9x | | +5x | $-36x^{2}$ | R.W $(x^2)(-15) = -15x^2$ Multiply -3x +5x $-15x^2$ Add -3x +5x +2x Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.6 $$x(x-4) + 9(x-4) = 0$$ $$(x-4)(x+9) = 0$$ $$x-4 = 0 \quad or \quad x+9 = 0$$ $$x = 4 \quad or \quad x = -9$$ As distance will be positive Then we take x = 4So Width = x m = 4 mAnd Length = (4 + 5)m= 9 m Q4: The sum of two numbers is 11 and sum of their square is 65. Find the numbers. #### **Solution:** Let the number may *x* and *y* According to first condition $$x + y = 11 \dots$$ Equ (i) According to second condition $$x^2 + y^2 = 65 \dots \dots Equ (ii)$$ Equ (i) \Rightarrow $$x + y = 11$$ $$x = 11 - y \dots \dots Equ$$ (iii) Put the value of x in Equ (ii) $$(11 - y)^2 + y^2 = 65$$ $$(11)^2 - 2(11)(y) + (y)^2 + y^2 - 65 = 0$$ $$121 - 22y + y^2 + y^2 - 65 = 0$$ R.W $(v^2)(28) = 28v^2$ Multiply -4v -7*y* $28v^2$ Add -4v -7y -11v $$y^2 + y^2 - 22y + 121 - 65 = 0$$ $$2y^2 - 22y + 56 = 0$$ $$2(y^2 - 11y + 28) = 0$$ ### Divide B. S by 2, we get $$y^{2} - 11y + 28 = 0$$ $$x^{2} - 4y - 7y + 28 = 0$$ $$y(y-4) - 7(y-4) = 0$$ $$(y-4)(y-7) = 0$$ $$(y-4)(y-7)=0$$ $$y - 4 = 0$$ or $y - 7 = 0$ $$y = 4$$ or $y = 7$ Now put y = 4 in equ (iii) $$x = 11 - 4$$ $$x = 7$$ Now put y = 7 in equ (iii) $$x = 11 - 7$$ $$x = 4$$ Thus the required two numbers are 4 and 7 ## Chapter # 2 Ex # 2.6 Q5: The sum of the squares of two numbers is 100. One number is two more than the other. Find the numbers. #### **Solution:** Let the first number = x As the other number two more than it So the other numbe = x + 2 As sum of squares of two number is 100 $$x^2 + (x+2)^2 = 100$$ $$x^{2} + (x)^{2} + 2(x)(2) + (2)^{2} = 100$$ $$x^2 + x^2 + 4x + 4 - 100 = 0$$ $$2x^2 + 4x - 96 = 0$$ $$2(x^2 + 2x - 48) = 0$$ Divide B. S by 2, we get $$x^2 + 2x - 48 = 0$$ $$x^2 - 6x + 8x - 48 = 0$$ $$x(x-6) + 8(x-6) = 0$$ $$(x-6)(x+8)=0$$ $$x - 6 = 0$$ or $x + 8 = 0$ $$x = 6$$ or $x = -8$ If $$x = 6$$ So first integer = x = 6 Other integer = x + 1 $$= 6 + 2$$ = 8 If $$x = -8$$ So first integer = x = -8 Second integer = x + 1 $$= -8 + 2$$ $$= -6$$ Q6: The area of a rectangle field is 252 square meters. The length of its side is 9 meter longer than its width. Find its sides. #### Solution: Let Width = x mSo Length = (x + 9)m As Area = 252 m^2 As we have Width \times Length = Area $$x(x+9) = 252$$ $$x^2 + 9x = 252$$ $$x^2 + 9x - 252 = 0$$ | R.W | | |-------------------------|-----------| | $(x^2)(-252) = -252x^2$ | | | Add | Multiply | | -12x | -12x | | +21x | +21x | | +9x | $-252x^2$ | R.W Add -6x +8x +2x $(x^2)(-48) = -48x^2$ Multiply -6x +8x $-48x^2$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.6 $$x^{2} - 12x + 21x - 252 = 0$$ $$x(x - 12) + 21(x - 12) = 0$$ $$(x - 12)(x + 21) = 0$$ $$x - 12 = 0 \quad or \quad x + 21 = 0$$ $$x = 12 \quad or \quad x = -21$$ As distance will be positive Then we take x = 4 So Width = x m = 12 m And Length = (12 + 9)m $= 21 \, m$ **O7**: One side of a rectangle is 3 centimeters less than twice the other. If the area of the rectangle is 54 square centimeters, then find the sides of the rectangle. #### **Solution:** Let Width = x cm #### According to given condition R.W $(2x^2)(-54) = -108x^2$ Multiply +9x -12x $-108x^{2}$ Add +9x -12x -3x So Length = (2x - 3)cm #### As Area $= 54 \text{ cm}^2$ As we have Width \times Length = Area $$x(2x-3) = 54$$ $$2x^2 - 3x = 54$$ $$2x^2 - 3x - 54 = 0$$ $$2x^2 + 9x - 12x - 54 = 0$$ $$x(2x + 9) - 6(2x + 9) = 0$$ $$(2x+9)(x-6) = 0$$ $$2x + 9 = 0$$ or $x - 6 = 0$ $$2x = -9$$ or $x = 6$ $$x = \frac{-9}{2} \quad or \quad x = 6$$ As distance will be positive Then we take x = 6 So Width = x cm = 6 cm And Length = (2x - 3)cm $$= (2(6) - 3)cm$$ $= (12 - 3)cm$ $$=(12-3)cm$$ $$=9cm$$ ## Chapter # 2 Ex # 2.6 The length of one side of right triangle exceeds the length of the other by 3 centimeters. If the hypotenuse is 15 centimeters, then find the length of the sides of the triangle. #### **Solution:** **Q8**: Let Base = x cm Then according to condition Perpendicular = (x + 3)cm Hypotenuse = 15 cm As there is right angled triangle #### **Using Pythagoras theorem** $$x^2 + (x+3)^2 = (15)^2$$ $$x^{2} + (x)^{2} + 2(x)(3) + (3)^{2} = 225$$ $$x^2 + x^2 + 6x + 9 - 225 = 0$$ $$2x^2 + 6x - 216 = 0$$ $$2(x^2 + 3x - 108) = 0$$ Divided B. S by 2, we get $$x^2 + 3x - 108 = 0$$ $$x^2 + 3x - 108 = 0$$ $$x^2 - 9x + 12x - 108 = 0$$ $$x(x - 9) + 12(x - 9) = 0$$ $$(x-9)(x+12)=0$$ $$x - 9 = 0$$ or $x + 12 = 0$ $$x = 9$$ or $x = -12$ As distance will be positive Then we take x = 9 So Base = x cm = 9 cm And Perpendicular = (x + 3)cm $$= (9+3)cm$$ R.W $(x^2)(-108) = -108x^2$ Multiply -9x +12x $-108x^{2}$ Add -9x +12x +3x $$= 12cm$$ The sides of a right triangle in cm are **Q9**: (x-1), x, (x+1). Find the sides of the triangle. #### **Solution:** Let Base = x cm Then according to condition Perpendicular = (x + 3)cm Hypotenuse = 15 cm As there is right angled triangle #### **Using Pythagoras theorem** $$x^2 + (x+3)^2 = (15)^2$$ $$x^{2} + (x)^{2} + 2(x)(3) + (3)^{2} = 225$$ $$x^2 + x^2 + 6x + 9 - 225 = 0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Ex # 2.6 $$2x^2 + 6x - 216 = 0$$ $$2(x^2 + 3x - 108) = 0$$ #### Divided B. S by 2, we get $$x^2 + 3x - 108 = 0$$ $$x^2 - 9x + 12x - 108 = 0$$ $$x(x-9) + 12(x-9) = 0$$ $$(x-9)(x+12)=0$$ $$x - 9 = 0$$ or $x + 12 = 0$ $$x = 9$$ or $x = -12$ As distance will be positive Then we take x = 9 So Base = $$x cm = 9 cm$$ And Perpendicular = $$(x + 3)cm$$ $$= (9+3)cm$$ = 12cm #### Q10: A shepherd bought some goats for Rs.9000. If he had paid Rs. 100 less for each, he would have got 3 goats more for the same amount of money. How many goats did he buy, when the rate in each case is uniform? Solution: Let numbers of goats = x And
cost of each goat = y As he bought goats for Rs. 9000 Then xy = 9000 Equ (i) Now if he paid Rs. 100 for each goat Then amount = y - 100 So he got 3 more goats Then number of goats = x + 3 According to new condition $$(x + 3)(y - 100) = 9000$$ Equ (ii) Equ (i) \Rightarrow $$xy = 9000$$ $$y = \frac{9000}{x}$$ Equ (iii) Put the value of *y* in Equ (ii) $$(x+3)\left(\frac{9000}{x}-100\right)=9000$$ $$(x+3)\left(\frac{9000}{x} - 100\right) = 9000$$ $$(x+3)\left(\frac{9000 - 100x}{x}\right) = 9000$$ $$(x+3)(9000-100x) = 9000x$$ ## Chapter # 2 #### Ex # 2.6 $$9000x - 100x^2 + 27000 - 300x = 9000x$$ R.W $(x^2)(-270) = -270x^2$ Add -15x +18x +3x Multiply -15x +18x $-270x^{2}$ $$-100x^2 + 9000x - 300x - 9000x + 27000 = 0$$ $$-100x^2 - 300x + 27000 = 0$$ $$-100(x^2 + 3x - 270) = 0$$ #### Divided B. S by -100, we get $$x^2 + 3x - 270 = 0$$ $$x^2 - 15x + 18x - 270 = 0$$ $$x(x-15) + 18(x-15) = 0$$ $$(x-15)(x+18)=0$$ $$x - 15 = 0$$ or $x + 18 = 0$ $$x = 15$$ or $x = -18$ As x = -18 is not possible Thus the number of goats bought = 15 ## **Review Exercise #2** #### Page # 48 For what value of k the roots of the equations **O2**: $3x^2 - 5x + k = 0$ are equal. #### Solution: $$3x^2 - 5x + k = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3, b = -5, c = k$$ As roots are equal then Discriminant = $$b^2 - 4ac = 0$$ $$b^2 - 4ac = 0$$ $$(-5)^2 - 4(3)(k) = 0$$ $$25 - 12k = 0$$ $$-12k = -25$$ $$12k = 25$$ $$k = \frac{25}{12}$$ Q3: Evaluate $$\left(-1+\sqrt{-3}\right)^7+\left(-1+\sqrt{-3}\right)^7$$ Solution: $$(-1+\sqrt{-3})^{7} + (-1+\sqrt{-3})^{7}$$ $$(-1+\sqrt{-1}\times3)^{7} + (-1+\sqrt{-1}\times3)^{7}$$ $$(-1+\sqrt{-1}\sqrt{3})^{7} + (-1+\sqrt{-1}\sqrt{3})^{7}$$ $$(-1+i\sqrt{3})^{7} + (-1+i\sqrt{3})^{7}$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Chapter # 2 #### Review Ex#2 $$\omega= rac{-1+i\sqrt{3}}{2}$$ and $\omega^2= rac{-1-i\sqrt{3}}{2}$ $$2\omega = -1 + i\sqrt{3}$$ and $2\omega^2 = -1 - i\sqrt{3}$ $$=(2\omega)^7+(2\omega^2)^7$$ $$= 2^7 \omega^7 + 2^7 \omega^{14}$$ $$= 2^7 (\omega^7 + \omega^{14})$$ $$= 2 (\omega + \omega)$$ $$=128(\omega^6.\omega+\omega^{12}.\omega^2)$$ $$=128(\omega^{3\times2}.\,\omega+\omega^{3\times4}.\,\omega^2\,)$$ $$= 128[(\omega^3)^2.\omega + (\omega^3)^4.\omega^2]$$ $$= 128[(1)^2 \cdot \omega + (1)^4 \cdot \omega^2]$$ $$= 128[1.\omega + 1.\omega^2]$$ $$= 128(\omega + \omega^2)$$ As $$\omega + \omega^2 = -1$$ $$= 128(-1)$$ $$= -128$$ #### Without solving the equation, find the sum and products of the roots of the following quadratic equations. (i) $$4x^2 - 1 = 0$$ #### Solution: $$4x^2 - 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 4, b = 0, c = -1$$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-0}{4} = \frac{0}{4} = 0$$ #### **And product of roots:** $$\alpha . \beta = \frac{c}{a} = \frac{-1}{4} = -\frac{1}{4}$$ (ii) $$3x^2 + 4x = 0$$ #### **Solution:** $$3x^2 + 4x = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3$$, $b = 4$, $c = 0$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-4}{3} = -\frac{4}{3}$$ #### Review Ex#2 #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{0}{3} = 0$$ ## Find the value of k so that the sum of the roots of the equation $3x^2 + (2k + 1)x + k - 5 = 0$ is equal to the product of its roots #### Solution: **O5**: $$3x^2 + (2k+1)x + k - 5 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 3$$, $b = 2k + 1$, $c = k - 5$ Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(2k+1)}{3}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{k-5}{3}$$ #### According to given condition #### Sum of roots = Product of roots $$\frac{-(2k+1)}{3} = \frac{k-5}{3}$$ Multiply B. S by 3 $$3 \times \frac{-(2k+1)}{3} = 3 \times \frac{k-5}{3}$$ $$-(2k+1) = k-5$$ $$-2k - 1 = k - 5$$ $$-2k - k = -5 + 1$$ $$-3k = -4$$ $$3k = 4$$ #### Divide B. S by 3 $$\frac{3k}{3} = \frac{4}{3}$$ $$k = \frac{4}{3}$$ #### Find the value of k if the roots of **O6**: $$x^2 - 3x + k + 1 = 0$$ differ by unity. #### **Solution:** $$x^2 - 3x + k + 1 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 1, b = -3, c = k + 1$$ Let α and $\alpha + 1$ be the roots of equation Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Review Ex # 2 #### Then sum of roots: $$\alpha + \alpha + 1 = \frac{-b}{a}$$ $$2\alpha + 1 = \frac{-(-3)}{1}$$ $$2\alpha + 1 = 3$$ $$2\alpha = 3 - 1$$ $$2\alpha = 2$$ $$\alpha = \frac{2}{2}$$ #### **And product of roots:** $$\alpha (\alpha + 1) = \frac{c}{a}$$ $$\alpha^{2} + \alpha = \frac{k+1}{1}$$ $$\alpha^{2} + \alpha = k+1$$ $\alpha = 1$ #### Put the value of α Put the value of $$\alpha$$ $$(1)^2 + 1 = k + 1$$ $$1 + 1 = k + 1$$ $$2 = k + 1$$ $$2 - 1 = k$$ $$1 = k$$ $$k = 1$$ # Q7: Find the quadratic equation whose roots multiplicative inverse of the roots of $$12x^2 - 17x + 6 = 0$$ #### **Solution:** $$12x^2 - 17x + 6 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here a = 12, b = -17, c = 6 Let α and β be the roots of equation #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a} = \frac{-(-17)}{12} = \frac{17}{12}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a} = \frac{6}{12} = \frac{1}{2}$$ As $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of required equation #### Now Sum of roots $$S = \frac{1}{\alpha} + \frac{1}{\beta}$$ ## Chapter # 2 #### Review Ex # 2 $$S = \frac{1}{\alpha} + \frac{1}{\beta}$$ $$S = \frac{\beta + \alpha}{\alpha\beta}$$ $$S = \frac{\frac{17}{12}}{\frac{1}{2}}$$ $$S = \frac{17}{12} \div \frac{1}{2}$$ $$S = \frac{17}{12} \times \frac{2}{1}$$ $$S = \frac{17}{6}$$ #### **Now Product of roots** $$P = \left(\frac{1}{\alpha}\right) \left(\frac{1}{\beta}\right)$$ $$P = \frac{1}{\alpha\beta}$$ $$P = \frac{1}{\frac{1}{2}}$$ $$P = 1 \div \frac{1}{2}$$ $$P = 1 \times \frac{2}{1}$$ $$P = 2$$ #### As required equation is: Now $$x^2 - \frac{17}{6}x + 2 = 0$$ $x^2 - Sx + P = 0$ #### Multiply all terms by 6 $$6 \times x^2 - 6 \times \frac{17}{6}x + 6 \times 2 = 6 \times 0$$ $$6x^2 - 17x + 12 = 0$$ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Review Ex#2 **O8:** If one of the roots of the quadratic equation $2x^2 + kx + 4 = 0$ is 2, find the other root. Also find the value of k. #### Solution: $$2x^2 + kx + 4 = 0$$ Compare it with $ax^2 + bx + c = 0$ Here $$a = 2, b = k, c = 4$$ Let α and β be the roots of equation As one root is 2, then $\alpha = 2$ #### Then sum of roots: $$\alpha + \beta = \frac{-b}{a}$$ $$2 + \beta = \frac{-k}{2} \dots \text{Equ (i)}$$ #### **And product of roots:** $$\alpha \cdot \beta = \frac{c}{a}$$ $$2 \cdot \beta = \frac{4}{2}$$ $$2.\beta = 2$$ $$\beta = \frac{2}{2}$$ $$\beta = 1$$ #### So the other root = 1 Put the values of $\beta = 1$ in equ(i) $$2+1 = \frac{-k}{2}$$ $$3 = \frac{-k}{2}$$ $$3 \times 2 = -k$$ $$6 = -k$$ $$-k = 6$$ $$-\kappa = 6$$ $k = -6$ Thus $$k = -6$$ **O9:** One root of the cubic equation $x^3 + 6x^2 + 11x + 6 = 0$ is -3. Use synthetic division to find the other roots. #### **Solution:** $$x^3 + 6x^2 + 11x + 6 = 0$$ Let $P(x) = x^3 + 6x^2 + 11x + 6$ As -3 is the root of $P(x)$. So ## Chapter # 2 #### Review Ex#2 Thus $$Q(x) = x^2 + 3x + 2$$ And R = 0 #### Now to find other roots $$x^{2} + 3x + 2 = 0$$ $$x^{2} + 1x + 2x + 2 = 0$$ $$x(x+1) + 2(x+1) = 0$$ $$(x+1)(x+2) = 0$$ $$x(x+1) + 2(x+1) = 0$$ (x+1)(x+2) = 0 x+1=0 or x+2=0 #### Q10: **(i)** $$x + y = 3 x^2 - 3xy + y^2 = 29$$ $$x + y = 3$$ $$x = 3 - y$$ Equ (iii) $$y^{2} - 3y - 4 = 0$$ $$y^{2} - 4y + 1y - 4 = 0$$ $$y(y - 4) + 1(y - 4) = 0$$ $$(y - 4)(y + 1) = 0$$ $$y - 4 = 0$$ or $y + 1 =$ $$y = 4$$ or $y = -1$ | $(x^{\omega})(2)$ | $) = 2x^{\omega}$ | |-------------------|-------------------| | Add | Multiply | | +1x | +1x | | +2 <i>x</i> | +2x | | +3x | $2x^2$ | | | | | | | | x(x + 1) + 2(x + 1) = 0 | | | |---------------------------------|-------------|---------------------| | (x+1)(x+2) = 0 | +3x | $2x^2$ | | x + 1 = 0 or $x + 2 =$ | 0 | | | x = -1 or $x = -2$ | | | | Thus the other roots are - | - 1 and – | . 2 | | Solve the following system | | | | x + y = 3 | | | | $x^2 - 3xy + y^2 = 29$ | | | | Solution: | | | | $x + y = 3 \dots$ | Egu (i) | | | $x^2 - 3xy + y^2 = 29$ | Ec | ıu (ii) | | Equ (i) ⇒ | | | | x + y = 3 | | | | x = 3 - y Equ (iii) | | | | Put the value of x in Equ (| | | | $(3-y)^2 - 3(3-y)y + y^2$ | - | | | $(3)^2 - 2(3)(y) + (y)^2 - 3y($ | | $y^2 = 29$ | | $9 - 6y + y^2 - 9y + 3y^2 +$ | | | | $9 - 6y + y^2 - 9y + 4y^2 -$ | | | | $y^2 + 4y^2 - 6y - 9y + 9 -$ | -29 = 0 | | | $5y^2 - 15y - 20 = 0$ | | | | $5(y^2 - 3y - 4) = 0$ | R | .w | | Divide B. S by 5, we get | | $\frac{1}{1} = -4y$ | | $y^2 - 3y - 4 = 0$ | Add | Multiply | | $y^2 - 4y + 1y - 4 = 0$ | -4y | -4y | | y(y-4) + 1(y-4) = 0 | +1 <i>y</i> | +1y | | (y-4)(y+1) = 0 | -3 <i>y</i> | $-4y^{2}$ | | y - 4 = 0 or $y + 1 = 0$ | 0 | | | y = 4 or $y = -1$ | | | | | | | Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- #### Review Ex # 2 Now put y = 4 in equ (iii) $$x = 3 - 4$$ $$x = -1$$ Now put y = -1 in equ (iii) $$x = 3 - (-1)$$ $$x = 3 + 1$$ $$x = 4$$ **Solution Set** = $\{(-1, 4), (4, -1)\}$ ## #### **Solution:** $$7x^2 - 4 = 5y^2 \dots \dots \text{Equ (i)}$$ $$3x^2 + 2 = 4y^2$$ Equ (ii) Multiply equ(i) with 4 and equ(ii) with 5 $$28x^2 - 16 = 20y^2$$ Equ (iii) $$15x^2 + 10 = 20y^2$$ Equ (iv) #### Subtract equ(iv) from equ(iii)
$$28x^{2} - 16 = 20y^{2}$$ $$\pm 15x^{2} \pm 10 = \pm 20y^{2}$$ $$13x^{2} - 26 = 0$$ Thus $13x^2 - 26 = 0$ $$13x^2 = 26$$ $$x^2 = \frac{26}{13}$$ $$x^2 = 2$$ #### Taking Square root on B. S $$\sqrt{x^2} = \pm \sqrt{2}$$ $$x = \sqrt{2}$$ or $x = -\sqrt{2}$ Now put $x = \sqrt{2}$ in equ (i) $$7(\sqrt{2})^2 - 4 = 5y^2$$ $$7(2) - 4 = 5y^2$$ $$14 - 4 = 5v^2$$ $$10 = 5y^2$$ $$5y^2 = 10$$ $$y^2 = \frac{10}{5}$$ $$v^2 = 2$$ #### Taking Square root on B. S $$\sqrt{y^2} = \pm \sqrt{2}$$ $$y = \sqrt{2} \quad or \quad y = -\sqrt{2}$$ ## Chapter # 2 #### Review Ex # 2 Now put $x = -\sqrt{2}$ in equ (i) $$7(-\sqrt{2})^2 - 4 = 5y^2$$ $$7(2) - 4 = 5v^2$$ $$14 - 4 = 5y^2$$ $$10 = 5y^2$$ $$5y^2 = 10$$ $$\frac{3y}{2} = \frac{1}{10}$$ $$v^2 = 2$$ #### Taking Square root on B. S $$\sqrt{y^2} = \pm \sqrt{2}$$ $$y = \sqrt{2}$$ or $y = -\sqrt{2}$ **Solution Set** $$=\left\{\left(\sqrt{2},\sqrt{2}\right),\left(\sqrt{2},-\sqrt{2}\right),\left(-\sqrt{2},\sqrt{2}\right)\right.,\left(-\sqrt{2},-\sqrt{2}\right)\right\}$$ Q11: The area of a rectangle is 48 cm². If length and width are each increased by 4 cm, the area of larger rectangle is 120 cm². Find the length and width of the original rectangle. #### **Solution:** Let Width of original rectangle = x cm And Length of original rectangle = y cm As Area of original rectangle = 48 m^2 As we have Width \times Length = Area $$xy = 48 \dots \text{Equ (i)}$$ Now Let Width of new rectangle = x + 4 cm And Length of new rectangle = y + 4 cm ## As Area of new rectangle = 120 m^2 As we have Width \times Length = Area $$(x + 4)(y + 4) = 120$$ $$xy + 4x + 4y + 16 = 120$$ Equ (ii) Now put xy = 48 in equ (ii) $$48 + 4x + 4y + 16 = 120$$ $$4x + 4y = 120 - 48 - 16$$ $$4(x+y) = 56$$ $$x + y = \frac{56}{4}$$ $$x + y = 14$$ | or more visiti metpony cermanores | For More Visit: | https:/ | /tehkals.com | |-----------------------------------|-----------------|---------|--------------| |-----------------------------------|-----------------|---------|--------------| Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- ## Chapter # 2 y = 14 - Now put x(14-x) $$14x - x^2 = 48$$ $$-x^2 + 14x - 48 = 0$$ $$-1(x^2 - 14x + 48) = 0$$ #### Divided $$x^2 - 14x + 48 = 0$$ $$x^2 - 6x - 8x + 48 = 0$$ $$x(x-6) - 8(x-6) = 0$$ $$(x-6)(x-8) = 0$$ $$x - 6 = 0$$ or $x - 8 = 0$ $$x = 6$$ or $x = 8$ Now put $$y = 14 - 6$$ $$y = 8$$ So Width And Len | Review Ex # 2 $-x$ Equ (iii) $xy = 14 - x$ in equ (i) | | |---|-------------| | (x) = 14 - x in equ (1)
(x) = 48
$(x)^2 = 48$ | | | 4x - 48 = 0
-14x + 48 = 0
1 B. S by - 1, we get
x + 48 = 0
-8x + 48 = 0 | | | 0 - 8(x - 6) = 0
0(x - 8) = 0
0 or x - 8 = 0
0 x = 8
0 x = 8
0 x = 6 in equ (iii) | | | h = x cm = 6 cm $gth = y cm = 8 cm$ | | | R.W $(x^{2})(48) = 48x^{2}$ Add Multiply $-6x -6x$ $-8x -8x$ $-14x 48x^{2}$ | trn & Teach | | | | | | | | | | Chapter # 2 For More Visit: https://tehkals.com/ Facebook: https://web.facebook.com/TehkalsDotCom/ YouTube: https://www.youtube.com/channel/UC991UmBM- # Tehkals.com Learn & Teach